These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 16853528)

  • 1. Controlling the length and shape of gold nanorods.
    Chen HM; Peng HC; Liu RS; Asakura K; Lee CL; Lee JF; Hu SF
    J Phys Chem B; 2005 Oct; 109(42):19553-5. PubMed ID: 16853528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH controlled synthesis of high aspect-ratio gold nanorods.
    Wei Q; Ji J; Shen J
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5708-14. PubMed ID: 19198293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability.
    Wang YN; Wei WT; Yang CW; Huang MH
    Langmuir; 2013 Aug; 29(33):10491-7. PubMed ID: 23924308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and optical properties of small Au nanorods using a seedless growth technique.
    Ali MR; Snyder B; El-Sayed MA
    Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical formation of crooked gold nanorods and gold networked structures by the additive organic solvent.
    Huang CJ; Chiu PH; Wang YH; Yang CF; Feng SW
    J Colloid Interface Sci; 2007 Feb; 306(1):56-65. PubMed ID: 17064724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeded high yield synthesis of short Au nanorods in aqueous solution.
    Sau TK; Murphy CJ
    Langmuir; 2004 Jul; 20(15):6414-20. PubMed ID: 15248731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures.
    Sreeprasad TS; Samal AK; Pradeep T
    Langmuir; 2007 Aug; 23(18):9463-71. PubMed ID: 17665936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of flexible, ultrathin gold nanowires in organic media.
    Pazos-Pérez N; Baranov D; Irsen S; Hilgendorff M; Liz-Marzán LM; Giersig M
    Langmuir; 2008 Sep; 24(17):9855-60. PubMed ID: 18652498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.
    Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of high aspect ratio gold nanorods: complete removal of platelets.
    Khanal BP; Zubarev ER
    J Am Chem Soc; 2008 Sep; 130(38):12634-5. PubMed ID: 18754620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length.
    Horsch MA; Zhang Z; Glotzer SC
    J Chem Phys; 2006 Nov; 125(18):184903. PubMed ID: 17115791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation.
    Kundu S; Peng L; Liang H
    Inorg Chem; 2008 Jul; 47(14):6344-52. PubMed ID: 18563880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step synthesis of large-aspect-ratio single-crystalline gold nanorods by using CTPAB and CTBAB surfactants.
    Kou X; Zhang S; Tsung CK; Yang Z; Yeung MH; Stucky GD; Sun L; Wang J; Yan C
    Chemistry; 2007; 13(10):2929-36. PubMed ID: 17183599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.