These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16853528)

  • 21. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.
    Alkilany AM; Nagaria PK; Hexel CR; Shaw TJ; Murphy CJ; Wyatt MD
    Small; 2009 Mar; 5(6):701-8. PubMed ID: 19226599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.
    Jain T; Westerlund F; Johnson E; Moth-Poulsen K; Bjørnholm T
    ACS Nano; 2009 Apr; 3(4):828-34. PubMed ID: 19284731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled manipulation of rigid nanorods by atomic force microscopy.
    Gnecco E; Rao A; Mougin K; Chandrasekar G; Meyer E
    Nanotechnology; 2010 May; 21(21):215702. PubMed ID: 20431190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape- and size-dependent refractive index sensitivity of gold nanoparticles.
    Chen H; Kou X; Yang Z; Ni W; Wang J
    Langmuir; 2008 May; 24(10):5233-7. PubMed ID: 18435552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
    Pietrobon B; McEachran M; Kitaev V
    ACS Nano; 2009 Jan; 3(1):21-6. PubMed ID: 19206244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-temperature seedless synthesis of gold nanorods.
    Zijlstra P; Bullen C; Chon JW; Gu M
    J Phys Chem B; 2006 Oct; 110(39):19315-8. PubMed ID: 17004786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape-tailored porous gold nanowires: from nano barbells to nano step-cones.
    Laocharoensuk R; Sattayasamitsathit S; Burdick J; Kanatharana P; Thavarungkul P; Wang J
    ACS Nano; 2007 Dec; 1(5):403-8. PubMed ID: 19206660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation.
    Gole A; Stone JW; Gemmill WR; zur Loye HC; Murphy CJ
    Langmuir; 2008 Jun; 24(12):6232-7. PubMed ID: 18484755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate.
    Ranjan R; Vaidya S; Thaplyal P; Qamar M; Ahmed J; Ganguli AK
    Langmuir; 2009 Jun; 25(11):6469-75. PubMed ID: 19466793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods.
    Cortie MB; Xu X; Ford MJ
    Phys Chem Chem Phys; 2006 Aug; 8(30):3520-7. PubMed ID: 16871341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia.
    Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y
    J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity.
    Khalavka Y; Becker J; Sönnichsen C
    J Am Chem Soc; 2009 Feb; 131(5):1871-5. PubMed ID: 19154114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer behavior of monolayer protected nanoclusters and nanowires of silver and gold.
    Sharma J; Vivek JP; Vijayamohanan KP
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3464-9. PubMed ID: 17252790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.