These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 16853585)
1. Reaction mechanism of deoxyribonucleotidase: a theoretical study. Himo F; Guo JD; Rinaldo-Matthis A; Nordlund P J Phys Chem B; 2005 Oct; 109(42):20004-8. PubMed ID: 16853585 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of the phosphotriesterase reaction mechanism. Chen SL; Fang WH; Himo F J Phys Chem B; 2007 Feb; 111(6):1253-5. PubMed ID: 17253743 [TBL] [Abstract][Full Text] [Related]
3. A DFT study on the formation of a phosphohistidine intermediate in prostatic acid phosphatase. Sharma S; Rauk A; Juffer AH J Am Chem Soc; 2008 Jul; 130(30):9708-16. PubMed ID: 18605729 [TBL] [Abstract][Full Text] [Related]
4. Theoretical examination of Mg(2+)-mediated hydrolysis of a phosphodiester linkage as proposed for the hammerhead ribozyme. Torres RA; Himo F; Bruice TC; Noodleman L; Lovell T J Am Chem Soc; 2003 Aug; 125(32):9861-7. PubMed ID: 12904054 [TBL] [Abstract][Full Text] [Related]
5. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study. Chen SL; Marino T; Fang WH; Russo N; Himo F J Phys Chem B; 2008 Feb; 112(8):2494-500. PubMed ID: 18247603 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and structural characterization of an alternatively spliced variant of human mitochondrial 5'(3')-deoxyribonucleotidase. Pachl P; Fábry M; Veverka V; Brynda J; Řezáčová P J Enzyme Inhib Med Chem; 2015 Feb; 30(1):63-8. PubMed ID: 24506201 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for substrate specificity of the human mitochondrial deoxyribonucleotidase. Walldén K; Ruzzenente B; Rinaldo-Matthis A; Bianchi V; Nordlund P Structure; 2005 Jul; 13(7):1081-8. PubMed ID: 16004879 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the pyrimidine 5'-nucleotidase SDT1 from Saccharomyces cerevisiae complexed with uridine 5'-monophosphate provides further insight into ligand binding. Shi N; Zhang YJ; Chen HK; Gao Y; Teng M; Niu L Proteins; 2011 Apr; 79(4):1358-62. PubMed ID: 21268116 [No Abstract] [Full Text] [Related]
9. Crystal structure of human cytosolic 5'-nucleotidase II: insights into allosteric regulation and substrate recognition. Walldén K; Stenmark P; Nyman T; Flodin S; Gräslund S; Loppnau P; Bianchi V; Nordlund P J Biol Chem; 2007 Jun; 282(24):17828-36. PubMed ID: 17405878 [TBL] [Abstract][Full Text] [Related]
10. Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions. Iché-Tarrat N; Ruiz-Lopez M; Barthelat JC; Vigroux A Chemistry; 2007; 13(13):3617-29. PubMed ID: 17290469 [TBL] [Abstract][Full Text] [Related]
11. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I. Kozmon S; Tvaroska I J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations. Grigorenko BL; Nemukhin AV; Shadrina MS; Topol IA; Burt SK Proteins; 2007 Feb; 66(2):456-66. PubMed ID: 17094109 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. Knöfel T; Sträter N J Mol Biol; 2001 May; 309(1):239-54. PubMed ID: 11491293 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. Walldén K; Nordlund P J Mol Biol; 2011 May; 408(4):684-96. PubMed ID: 21396942 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of human and murine deoxyribonucleotidases: insights into recognition of substrates and nucleotide analogues. Walldén K; Rinaldo-Matthis A; Ruzzenente B; Rampazzo C; Bianchi V; Nordlund P Biochemistry; 2007 Dec; 46(48):13809-18. PubMed ID: 17985935 [TBL] [Abstract][Full Text] [Related]
16. Reaction mechanism of the binuclear zinc enzyme glyoxalase II - A theoretical study. Chen SL; Fang WH; Himo F J Inorg Biochem; 2009 Feb; 103(2):274-81. PubMed ID: 19062100 [TBL] [Abstract][Full Text] [Related]
17. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase. Sevastik R; Himo F Bioorg Chem; 2007 Dec; 35(6):444-57. PubMed ID: 17904194 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme. Ferreira DE; De Almeida WB; Neves A; Rocha WR Phys Chem Chem Phys; 2008 Dec; 10(46):7039-46. PubMed ID: 19030600 [TBL] [Abstract][Full Text] [Related]
19. Phosphate mono- and diesterase activities of the trinuclear zinc enzyme nuclease P1--insights from quantum chemical calculations. Liao RZ; Yu JG; Himo F Inorg Chem; 2010 Aug; 49(15):6883-8. PubMed ID: 20604512 [TBL] [Abstract][Full Text] [Related]
20. Hydrolysis of organophosphate compounds by mutant butyrylcholinesterase: a story of two histidines. Amitay M; Shurki A Proteins; 2011 Feb; 79(2):352-64. PubMed ID: 21064131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]