These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 16853625)

  • 1. Defect-mediated melting in superheated noble gas crystals.
    Delogu F
    J Phys Chem B; 2005 Nov; 109(43):20295-302. PubMed ID: 16853625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic aspects of homogeneous and heterogeneous melting processes.
    Delogu F
    J Phys Chem B; 2006 Jun; 110(25):12645-52. PubMed ID: 16800597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative dynamics and self-diffusion in superheated crystals.
    Delogu F
    J Phys Chem B; 2005 Aug; 109(32):15291-6. PubMed ID: 16852937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative atomic displacements and melting at the limit of superheating.
    Delogu F
    J Phys Chem B; 2006 Feb; 110(7):3281-7. PubMed ID: 16494341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of the melting mechanisms of perfect and imperfect crystals of dimethylnitramine.
    Zheng L; Rice BM; Thompson DL
    J Phys Chem B; 2007 Mar; 111(11):2891-5. PubMed ID: 17388449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How superheated crystals melt.
    Forsblom M; Grimvall G
    Nat Mater; 2005 May; 4(5):388-90. PubMed ID: 15852020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting of defective Cu with stacking faults.
    Han LB; An Q; Fu RS; Zheng L; Luo SN
    J Chem Phys; 2009 Jan; 130(2):024508. PubMed ID: 19154039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics of homogeneous melting beyond the limit of superheating.
    Alfè D; Cazorla C; Gillan MJ
    J Chem Phys; 2011 Jul; 135(2):024102. PubMed ID: 21766920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast superheating and melting of bulk ice.
    Iglev H; Schmeisser M; Simeonidis K; Thaller A; Laubereau A
    Nature; 2006 Jan; 439(7073):183-6. PubMed ID: 16407948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of a thermotropic nematic liquid crystal confined to controlled pore glasses as studied by 129Xe NMR spectroscopy.
    Tallavaara P; Telkki VV; Jokisaari J
    J Phys Chem B; 2006 Nov; 110(43):21603-12. PubMed ID: 17064115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate.
    Velardez GF; Alavi S; Thompson DL
    J Chem Phys; 2004 May; 120(19):9151-9. PubMed ID: 15267851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of superheated water in the dissolution and perturbation of hydrogen bonding in the crystalline lattice of polyamide 4,6.
    Vinken E; Terry AE; van Asselen O; Spoelstra AB; Graf R; Rastogi S
    Langmuir; 2008 Jun; 24(12):6313-26. PubMed ID: 18479158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 'zero charge' partitioning behaviour of noble gases during mantle melting.
    Brooker RA; Du Z; Blundy JD; Kelley SP; Allan NL; Wood BJ; Chamorro EM; Wartho JA; Purton JA
    Nature; 2003 Jun; 423(6941):738-41. PubMed ID: 12802331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of microstructural evolution during melting and crystallization.
    Xiao S; Hu W
    J Chem Phys; 2006 Jul; 125(1):014503. PubMed ID: 16863312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale lead and noble gas inclusions in aluminum: structures and properties.
    Johnson E; Andersen HH; Dahmen U
    Microsc Res Tech; 2004 Aug; 64(5-6):356-72. PubMed ID: 15549703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous melting near the superheat limit of hard-sphere crystals.
    Wang F; Wang Z; Peng Y; Zheng Z; Han Y
    Soft Matter; 2018 Mar; 14(13):2447-2453. PubMed ID: 29464263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.