BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16853645)

  • 1. Spatial electron distribution and its origin in the nanoporous TiO2 network of a dye solar cell.
    Würfel U; Wagner J; Hinsch A
    J Phys Chem B; 2005 Nov; 109(43):20444-8. PubMed ID: 16853645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell.
    Lee S; Kim JY; Youn SH; Park M; Hong KS; Jung HS; Lee JK; Shin H
    Langmuir; 2007 Nov; 23(23):11907-10. PubMed ID: 17927224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
    Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K
    J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of colloidal quantum-dot-sensitized solar cells.
    Giménez S; Mora-Seró I; Macor L; Guijarro N; Lana-Villarreal T; Gómez R; Diguna LJ; Shen Q; Toyoda T; Bisquert J
    Nanotechnology; 2009 Jul; 20(29):295204. PubMed ID: 19567969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites.
    Tan B; Wu Y
    J Phys Chem B; 2006 Aug; 110(32):15932-8. PubMed ID: 16898747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells.
    Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A
    J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nanochemical environments in porous TiO2 in photocurrent efficiency and degradation in dye sensitized solar cells.
    Junghänel M; Tributsch H
    J Phys Chem B; 2005 Dec; 109(48):22876-83. PubMed ID: 16853980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.
    Barnes PR; Anderson AY; Durrant JR; O'Regan BC
    Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells.
    Boschloo G; Häggman L; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(26):13144-50. PubMed ID: 16805626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode.
    Lobato K; Peter LM; Würfel U
    J Phys Chem B; 2006 Aug; 110(33):16201-4. PubMed ID: 16913742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.