These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16853762)

  • 1. Mesoscopic multiparticle collision dynamics of reaction-diffusion fronts.
    Tucci K; Kapral R
    J Phys Chem B; 2005 Nov; 109(45):21300-4. PubMed ID: 16853762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscopic model for diffusion-influenced reaction dynamics.
    Tucci K; Kapral R
    J Chem Phys; 2004 May; 120(17):8262-70. PubMed ID: 15267746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.
    Chen JX; Kapral R
    J Chem Phys; 2011 Jan; 134(4):044503. PubMed ID: 21280744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic description of solvent effects on polymer dynamics.
    Lee SH; Kapral R
    J Chem Phys; 2006 Jun; 124(21):214901. PubMed ID: 16774436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of polymers in a particle-based mesoscopic solvent.
    Mussawisade K; Ripoll M; Winkler RG; Gompper G
    J Chem Phys; 2005 Oct; 123(14):144905. PubMed ID: 16238422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady Marangoni flow traveling with chemical fronts.
    Rongy L; De Wit A
    J Chem Phys; 2006 Apr; 124(16):164705. PubMed ID: 16674155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparticle collision dynamics for diffusion-influenced signaling pathways.
    Strehl R; Rohlf K
    Phys Biol; 2016 Jul; 13(4):046004. PubMed ID: 27466753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparticle collision dynamics modeling of viscoelastic fluids.
    Tao YG; Götze IO; Gompper G
    J Chem Phys; 2008 Apr; 128(14):144902. PubMed ID: 18412477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for diffusion-influenced biochemical reactions.
    Dobrzynski M; Rodríguez JV; Kaandorp JA; Blom JG
    Bioinformatics; 2007 Aug; 23(15):1969-77. PubMed ID: 17537752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a complexing agent on the transverse stability of cubic autocatalytic reaction fronts.
    Merkin JH
    J Chem Phys; 2009 Jul; 131(3):034506. PubMed ID: 19624208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature inhomogeneities simulated with multiparticle-collision dynamics.
    Lüsebrink D; Ripoll M
    J Chem Phys; 2012 Feb; 136(8):084106. PubMed ID: 22380031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts.
    D'Hernoncourt J; De Wit A; Merkin JH
    J Chem Phys; 2007 Mar; 126(10):104504. PubMed ID: 17362072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of self-propelled nanomotors in chemically active media.
    Thakur S; Kapral R
    J Chem Phys; 2011 Jul; 135(2):024509. PubMed ID: 21766959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal self-organization in a surface reaction: from the atomic to the mesoscopic scale.
    Sachs C; Hildebrand M; Volkening S; Wintterlin J; Ertl G
    Science; 2001 Aug; 293(5535):1635-8. PubMed ID: 11533484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal patterns driven by autocatalytic internal reaction noise.
    Hochberg D; Zorzano MP; Morán F
    J Chem Phys; 2005 Jun; 122(21):214701. PubMed ID: 15974756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized nanostructures in surface chemical reactions: Mechanisms and mesoscopic modeling.
    Hildebrand M
    Chaos; 2002 Mar; 12(1):144-156. PubMed ID: 12779542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.