BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16853793)

  • 1. Dipole-dipole plasmon interactions in gold-on-polystyrene composites.
    Peceros KE; Xu X; Bulcock SR; Cortie MB
    J Phys Chem B; 2005 Nov; 109(46):21516-20. PubMed ID: 16853793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method.
    Portalès H; Pinna N; Pileni MP
    J Phys Chem A; 2009 Apr; 113(16):4094-9. PubMed ID: 19278219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoshells on polystyrene cores for control of surface plasmon resonance.
    Shi W; Sahoo Y; Swihart MT; Prasad PN
    Langmuir; 2005 Feb; 21(4):1610-7. PubMed ID: 15697315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions.
    Gunnarsson L; Rindzevicius T; Prikulis J; Kasemo B; Käll M; Zou S; Schatz GC
    J Phys Chem B; 2005 Jan; 109(3):1079-87. PubMed ID: 16851063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface.
    Lee S; Pérez-Luna VH
    Langmuir; 2007 Apr; 23(9):5097-9. PubMed ID: 17378591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectroscopic investigation of the shape dependency of gold nanoparticles grown on roughened surfaces.
    Evans PG; Passian A; Ferrell TL
    Ultramicroscopy; 2007 Oct; 107(10-11):1012-9. PubMed ID: 17590274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional self-organization of polystyrene-capped gold nanoparticles.
    Yockell-Lelièvre H; Desbiens J; Ritcey AM
    Langmuir; 2007 Feb; 23(5):2843-50. PubMed ID: 17249703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker.
    Ou YY; Huang MH
    J Phys Chem B; 2006 Feb; 110(5):2031-6. PubMed ID: 16471779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation.
    Sendroiu IE; Mertens SF; Schiffrin DJ
    Phys Chem Chem Phys; 2006 Mar; 8(12):1430-6. PubMed ID: 16633625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of plasmonic heating by gold nanospheres and nanoshells.
    Harris N; Ford MJ; Cortie MB
    J Phys Chem B; 2006 Jun; 110(22):10701-7. PubMed ID: 16771316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes.
    Rodríguez-Fernández J; Pérez-Juste J; García de Abajo FJ; Liz-Marzán LM
    Langmuir; 2006 Aug; 22(16):7007-10. PubMed ID: 16863252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared.
    Gautier C; Bürgi T
    J Am Chem Soc; 2006 Aug; 128(34):11079-87. PubMed ID: 16925425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.