BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16853839)

  • 1. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface.
    Takahashi M
    J Phys Chem B; 2005 Nov; 109(46):21858-64. PubMed ID: 16853839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity.
    Drzymala J; Sadowski Z; Holysz L; Chibowski E
    J Colloid Interface Sci; 1999 Dec; 220(2):229-234. PubMed ID: 10607438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions.
    Kim JY; Song MG; Kim JD
    J Colloid Interface Sci; 2000 Mar; 223(2):285-291. PubMed ID: 10700413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of divalent metal ions on the zeta potential of bubbles.
    Han MY; Ahn HJ; Shin MS; Kim SR
    Water Sci Technol; 2004; 50(8):49-56. PubMed ID: 15566186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bubble-solid interactions in water and electrolyte solutions.
    Pushkarova RA; Horn RG
    Langmuir; 2008 Aug; 24(16):8726-34. PubMed ID: 18656971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of alpha-cyclodextrin.
    Jin F; Li J; Ye X; Wu C
    J Phys Chem B; 2007 Oct; 111(40):11745-9. PubMed ID: 17880127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A double layer model of the gas bubble/water interface.
    Leroy P; Jougnot D; Revil A; Lassin A; Azaroual M
    J Colloid Interface Sci; 2012 Dec; 388(1):243-56. PubMed ID: 22985594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeta Potential of Insoluble Monolayer of Long-Chain Alcohol at the Air-Aqueous Solution Interface.
    Usui S; Healy TW
    J Colloid Interface Sci; 2001 Aug; 240(1):127-132. PubMed ID: 11446794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of interactions between particles and charged microbubbles using a combined micro- and macroscopic strategy.
    Johnson D; Hilal N; Waters K; Hadler K; Cilliers J
    Langmuir; 2009 May; 25(9):4880-5. PubMed ID: 19341287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The zeta-Potential of Silicone Oil Droplets Dispersed in Aqueous Solutions.
    Gu Y; Li D
    J Colloid Interface Sci; 1998 Oct; 206(1):346-349. PubMed ID: 9761664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipolar anions are not preferentially attracted to the oil/water interface.
    Beattie JK; Djerdjev AM; Franks GV; Warr GG
    J Phys Chem B; 2005 Aug; 109(33):15675-6. PubMed ID: 16852987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface.
    Abbasnezhad H; Gray MR; Foght JM
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):36-41. PubMed ID: 17997081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold curves obtained under various gaseous conditions for free radical generation by burst ultrasound - Effects of dissolved gas, microbubbles and gas transport from the air.
    Okada K; Kudo N; Hassan MA; Kondo T; Yamamoto K
    Ultrason Sonochem; 2009 Apr; 16(4):512-8. PubMed ID: 19124266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of aqueous NaF and NaI solutions near a hydrophobic surface.
    Pal S; Müller-Plathe F
    J Phys Chem B; 2005 Apr; 109(13):6405-15. PubMed ID: 16851713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces.
    Creux P; Lachaise J; Graciaa A; Beattie JK; Djerdjev AM
    J Phys Chem B; 2009 Oct; 113(43):14146-50. PubMed ID: 19810695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface potential of spherical polyelectrolyte brushes in the presence of trivalent counterions.
    Hoffmann M; Jusufi A; Schneider C; Ballauff M
    J Colloid Interface Sci; 2009 Oct; 338(2):566-72. PubMed ID: 19651414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Nov; 315(1):307-12. PubMed ID: 17662299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ study of diffusion and interaction of water and mono- or divalent anions in a positively charged membrane using two-dimensional correlation FT-IR/attenuated total reflection spectroscopy.
    Tang B; Wu P; Siesler HW
    J Phys Chem B; 2008 Mar; 112(10):2880-7. PubMed ID: 18284226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the growth of polyelectrolyte multilayers formed at interfaces between aqueous phases and thermotropic liquid crystals.
    Gupta JK; Tjipto E; Zelikin AN; Caruso F; Abbott NL
    Langmuir; 2008 May; 24(10):5534-42. PubMed ID: 18419143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.