These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16853854)

  • 1. Calculation of the entropy and free energy from monte carlo simulations of a peptide stretched by an external force.
    Cheluvaraja S; Meirovitch H
    J Phys Chem B; 2005 Nov; 109(46):21963-70. PubMed ID: 16853854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides.
    Cheluvaraja S; Meirovitch H
    J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the entropy and free energy of peptides by molecular dynamics simulations using the hypothetical scanning molecular dynamics method.
    Cheluvaraja S; Meirovitch H
    J Chem Phys; 2006 Jul; 125(2):24905. PubMed ID: 16848609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the entropy of random coil polymers with the hypothetical scanning Monte Carlo method.
    White RP; Meirovitch H
    J Chem Phys; 2005 Dec; 123(21):214908. PubMed ID: 16356071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation method for calculating the entropy and free energy of peptides and proteins.
    Cheluvaraja S; Meirovitch H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9241-6. PubMed ID: 15197271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.
    Meirovitch H
    J Mol Recognit; 2010; 23(2):153-72. PubMed ID: 19650071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of the Entropy of Lattice Polymer Models from Monte Carlo Trajectories.
    White RP; Funt J; Meirovitch H
    Chem Phys Lett; 2005 Jul; 410(4-6):430-435. PubMed ID: 16912812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: application to liquid argon and water.
    White RP; Meirovitch H
    J Chem Phys; 2004 Dec; 121(22):10889-904. PubMed ID: 15634040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids.
    White RP; Meirovitch H
    J Chem Phys; 2006 May; 124(20):204108. PubMed ID: 16774320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the free energy of peptides with the local states method: analogues of gonadotropin releasing hormone in the random coil and stable states.
    Meirovitch H; Koerber SC; Rivier JE; Hagler AT
    Biopolymers; 1994 Jul; 34(7):815-39. PubMed ID: 8054467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of the Free and Bound Microstates of a Mobile Loop of α-Amylase Obtained from the Absolute Entropy and Free Energy.
    Cheluvaraja S; Meirovitch H
    J Chem Theory Comput; 2008 Jan; 4(1):192-208. PubMed ID: 26619992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation method for calculating the absolute entropy and free energy of fluids: application to liquid argon and water.
    White RP; Meirovitch H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9235-40. PubMed ID: 15197270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrostatically driven Monte Carlo method: application to conformational analysis of decaglycine.
    Ripoll DR; Vásquez MJ; Scheraga HA
    Biopolymers; 1991 Feb; 31(3):319-30. PubMed ID: 1868160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide.
    Kidera A
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9886-9. PubMed ID: 7568238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy and free energy of a mobile protein loop in explicit water.
    Cheluvaraja S; Mihailescu M; Meirovitch H
    J Phys Chem B; 2008 Aug; 112(31):9512-22. PubMed ID: 18613721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-harmonic fluctuations of two bound peptides.
    Gur M; Erman B
    Proteins; 2012 Dec; 80(12):2769-79. PubMed ID: 22890690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo sampling algorithm for searching a scale-transformed energy space of polypeptides.
    Nakamura H
    J Comput Chem; 2002 Mar; 23(4):511-6. PubMed ID: 11908088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of conformation-dependent biomolecular forces.
    Hwang W
    J Chem Phys; 2007 Nov; 127(17):175104. PubMed ID: 17994854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.