These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 16853857)
1. Novel bifunctional acridine-acridinium conjugates: synthesis and study of their chromophore-selective electron-transfer and DNA-binding properties. Kuruvilla E; Joseph J; Ramaiah D J Phys Chem B; 2005 Nov; 109(46):21997-2002. PubMed ID: 16853857 [TBL] [Abstract][Full Text] [Related]
2. Tuning of intercalation and electron-transfer processes between DNA and acridinium derivatives through steric effects. Joseph J; Kuruvilla E; Achuthan AT; Ramaiah D; Schuster GB Bioconjug Chem; 2004; 15(6):1230-5. PubMed ID: 15546188 [TBL] [Abstract][Full Text] [Related]
3. Novel bifunctional viologen-linked pyrene conjugates: Synthesis and study of their interactions with nucleosides and DNA. Hariharan M; Joseph J; Ramaiah D J Phys Chem B; 2006 Dec; 110(48):24678-86. PubMed ID: 17134231 [TBL] [Abstract][Full Text] [Related]
4. Selective interactions of a few acridinium derivatives with single strand DNA: study of photophysical and DNA binding interactions. Kuruvilla E; Ramaiah D J Phys Chem B; 2007 Jun; 111(23):6549-56. PubMed ID: 17516677 [TBL] [Abstract][Full Text] [Related]
5. Carbon nanotube-acridine nanohybrids: spectroscopic characterization of photoinduced electron transfer. Mackiewicz N; Delaire JA; Rutherford AW; Doris E; Mioskowski C Chemistry; 2009; 15(15):3882-8. PubMed ID: 19229943 [TBL] [Abstract][Full Text] [Related]
6. Design of photoactivated DNA oxidizing agents: synthesis and study of photophysical properties and DNA interactions of novel viologen-linked acridines. Joseph J; Eldho NV; Ramaiah D Chemistry; 2003 Dec; 9(23):5926-35. PubMed ID: 14673864 [TBL] [Abstract][Full Text] [Related]
7. 9-donor-substituted acridizinium salts: versatile environment-sensitive fluorophores for the detection of biomacromolecules. Granzhan A; Ihmels H; Viola G J Am Chem Soc; 2007 Feb; 129(5):1254-67. PubMed ID: 17263409 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and spectroscopic and DNA-binding properties of fluorogenic acridine-containing cyanine dyes. Mahmood T; Paul A; Ladame S J Org Chem; 2010 Jan; 75(1):204-7. PubMed ID: 19954141 [TBL] [Abstract][Full Text] [Related]
9. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory. von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608 [TBL] [Abstract][Full Text] [Related]
11. Molecular recognition of DNA by rigid [N]-polynorbornane-derived bifunctional intercalators: synthesis and evaluation of their binding properties. Van Vliet LD; Ellis T; Foley PJ; Liu L; Pfeffer FM; Russell RA; Warrener RN; Hollfelder F; Waring MJ J Med Chem; 2007 May; 50(10):2326-40. PubMed ID: 17429957 [TBL] [Abstract][Full Text] [Related]
12. Copper-activated DNA photocleavage by a pyridine-linked bis-acridine intercalator. Fernandez MJ; Wilson B; Palacios M; Rodrigo MM; Grant KB; Lorente A Bioconjug Chem; 2007; 18(1):121-9. PubMed ID: 17226964 [TBL] [Abstract][Full Text] [Related]
13. Dansyl-naphthalimide dyads as molecular probes: effect of spacer group on metal ion binding properties. Shankar BH; Ramaiah D J Phys Chem B; 2011 Nov; 115(45):13292-9. PubMed ID: 21981608 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, DNA binding and cleavage activity of macrocyclic polyamines bearing mono- or bis-acridine moieties. Liu Q; Zhang J; Wang MQ; Zhang DW; Lu QS; Huang Y; Lin HH; Yu XQ Eur J Med Chem; 2010 Nov; 45(11):5302-8. PubMed ID: 20850912 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced intramolecular electron-transfer reactions of reconstituted met- and zinc-myoglobins appending acridine and methylacridinium ion as DNA-binders. Takashima H; Tara C; Namikawa S; Kato T; Araki Y; Ito O; Tsukahara K J Phys Chem B; 2006 Dec; 110(51):26413-23. PubMed ID: 17181301 [TBL] [Abstract][Full Text] [Related]
16. [DNA interaction with the bifunctional acridine dye]. Moroshkina EB; Stepanova TF; Raketskaia VV; Frisman EV Mol Biol (Mosk); 1987; 21(2):389-95. PubMed ID: 3600622 [TBL] [Abstract][Full Text] [Related]
17. Encapsulation of electron donor-acceptor dyads in beta-cyclodextrin cavity: unusual planarization and enhancement in rate of electron-transfer reaction. Hariharan M; Neelakandan PP; Ramaiah D J Phys Chem B; 2007 Oct; 111(41):11940-7. PubMed ID: 17892280 [TBL] [Abstract][Full Text] [Related]
18. Long-lived photogenerated states of alpha-oligothiophene-acridinium dyads have triplet character. Hu J; Xia B; Bao D; Ferreira A; Wan J; Jones G; Vullev VI J Phys Chem A; 2009 Apr; 113(13):3096-107. PubMed ID: 19267468 [TBL] [Abstract][Full Text] [Related]
19. Photophysical properties of N-alkylated azahelicene derivatives as DNA intercalators: counterion effects. Passeri R; Aloisi GG; Elisei F; Latterini L; Caronna T; Fontana F; Sora IN Photochem Photobiol Sci; 2009 Nov; 8(11):1574-82. PubMed ID: 19862416 [TBL] [Abstract][Full Text] [Related]
20. Novel biotinylated acridinium derivatives: new reagents for fluorescence immunoassays and proteomics. Scorilas A; Agiamarnioti K; Papadopoulos K Clin Chim Acta; 2005 Jul; 357(2):159-67. PubMed ID: 15935337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]