BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16853857)

  • 1. Novel bifunctional acridine-acridinium conjugates: synthesis and study of their chromophore-selective electron-transfer and DNA-binding properties.
    Kuruvilla E; Joseph J; Ramaiah D
    J Phys Chem B; 2005 Nov; 109(46):21997-2002. PubMed ID: 16853857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of intercalation and electron-transfer processes between DNA and acridinium derivatives through steric effects.
    Joseph J; Kuruvilla E; Achuthan AT; Ramaiah D; Schuster GB
    Bioconjug Chem; 2004; 15(6):1230-5. PubMed ID: 15546188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bifunctional viologen-linked pyrene conjugates: Synthesis and study of their interactions with nucleosides and DNA.
    Hariharan M; Joseph J; Ramaiah D
    J Phys Chem B; 2006 Dec; 110(48):24678-86. PubMed ID: 17134231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective interactions of a few acridinium derivatives with single strand DNA: study of photophysical and DNA binding interactions.
    Kuruvilla E; Ramaiah D
    J Phys Chem B; 2007 Jun; 111(23):6549-56. PubMed ID: 17516677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube-acridine nanohybrids: spectroscopic characterization of photoinduced electron transfer.
    Mackiewicz N; Delaire JA; Rutherford AW; Doris E; Mioskowski C
    Chemistry; 2009; 15(15):3882-8. PubMed ID: 19229943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of photoactivated DNA oxidizing agents: synthesis and study of photophysical properties and DNA interactions of novel viologen-linked acridines.
    Joseph J; Eldho NV; Ramaiah D
    Chemistry; 2003 Dec; 9(23):5926-35. PubMed ID: 14673864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 9-donor-substituted acridizinium salts: versatile environment-sensitive fluorophores for the detection of biomacromolecules.
    Granzhan A; Ihmels H; Viola G
    J Am Chem Soc; 2007 Feb; 129(5):1254-67. PubMed ID: 17263409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and spectroscopic and DNA-binding properties of fluorogenic acridine-containing cyanine dyes.
    Mahmood T; Paul A; Ladame S
    J Org Chem; 2010 Jan; 75(1):204-7. PubMed ID: 19954141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory.
    von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME
    J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of two peptide-acridine conjugates containing the SPKK peptide motif with DNA and chromatin.
    Flock S; Bailly F; Bailly C; Waring MJ; Hénichart JP; Colson P; Houssier C
    J Biomol Struct Dyn; 1994 Feb; 11(4):881-900. PubMed ID: 8204221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition of DNA by rigid [N]-polynorbornane-derived bifunctional intercalators: synthesis and evaluation of their binding properties.
    Van Vliet LD; Ellis T; Foley PJ; Liu L; Pfeffer FM; Russell RA; Warrener RN; Hollfelder F; Waring MJ
    J Med Chem; 2007 May; 50(10):2326-40. PubMed ID: 17429957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-activated DNA photocleavage by a pyridine-linked bis-acridine intercalator.
    Fernandez MJ; Wilson B; Palacios M; Rodrigo MM; Grant KB; Lorente A
    Bioconjug Chem; 2007; 18(1):121-9. PubMed ID: 17226964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dansyl-naphthalimide dyads as molecular probes: effect of spacer group on metal ion binding properties.
    Shankar BH; Ramaiah D
    J Phys Chem B; 2011 Nov; 115(45):13292-9. PubMed ID: 21981608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, DNA binding and cleavage activity of macrocyclic polyamines bearing mono- or bis-acridine moieties.
    Liu Q; Zhang J; Wang MQ; Zhang DW; Lu QS; Huang Y; Lin HH; Yu XQ
    Eur J Med Chem; 2010 Nov; 45(11):5302-8. PubMed ID: 20850912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced intramolecular electron-transfer reactions of reconstituted met- and zinc-myoglobins appending acridine and methylacridinium ion as DNA-binders.
    Takashima H; Tara C; Namikawa S; Kato T; Araki Y; Ito O; Tsukahara K
    J Phys Chem B; 2006 Dec; 110(51):26413-23. PubMed ID: 17181301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [DNA interaction with the bifunctional acridine dye].
    Moroshkina EB; Stepanova TF; Raketskaia VV; Frisman EV
    Mol Biol (Mosk); 1987; 21(2):389-95. PubMed ID: 3600622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of electron donor-acceptor dyads in beta-cyclodextrin cavity: unusual planarization and enhancement in rate of electron-transfer reaction.
    Hariharan M; Neelakandan PP; Ramaiah D
    J Phys Chem B; 2007 Oct; 111(41):11940-7. PubMed ID: 17892280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lived photogenerated states of alpha-oligothiophene-acridinium dyads have triplet character.
    Hu J; Xia B; Bao D; Ferreira A; Wan J; Jones G; Vullev VI
    J Phys Chem A; 2009 Apr; 113(13):3096-107. PubMed ID: 19267468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysical properties of N-alkylated azahelicene derivatives as DNA intercalators: counterion effects.
    Passeri R; Aloisi GG; Elisei F; Latterini L; Caronna T; Fontana F; Sora IN
    Photochem Photobiol Sci; 2009 Nov; 8(11):1574-82. PubMed ID: 19862416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biotinylated acridinium derivatives: new reagents for fluorescence immunoassays and proteomics.
    Scorilas A; Agiamarnioti K; Papadopoulos K
    Clin Chim Acta; 2005 Jul; 357(2):159-67. PubMed ID: 15935337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.