These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16853876)

  • 21. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches.
    Cho JH; Richards CD; Richards RF
    Rev Sci Instrum; 2008 Mar; 79(3):034901. PubMed ID: 18377038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb(18-x)Sn(x)BiTe(20) thermoelectric materials.
    He J; Gueguen A; Sootsman JR; Zheng JC; Wu L; Zhu Y; Kanatzidis MG; Dravid VP
    J Am Chem Soc; 2009 Dec; 131(49):17828-35. PubMed ID: 19995074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts.
    Zhang Z; Gao J; Wong LM; Tao JG; Liao L; Zheng Z; Xing GZ; Peng HY; Yu T; Shen ZX; Huan CH; Wang SJ; Wu T
    Nanotechnology; 2009 Apr; 20(13):135605. PubMed ID: 19420508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bismuth nanowires with very low lattice thermal conductivity as revealed by the 3ω method.
    Holtzman A; Shapira E; Selzer Y
    Nanotechnology; 2012 Dec; 23(49):495711. PubMed ID: 23154308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion.
    Chen TG; Yu P; Chou RH; Pan CL
    Opt Express; 2010 Sep; 18 Suppl 3():A467-76. PubMed ID: 21165077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.
    Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK
    Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron and phonon renormalization near charged defects in carbon nanotubes.
    Maciel IO; Anderson N; Pimenta MA; Hartschuh A; Qian H; Terrones M; Terrones H; Campos-Delgado J; Rao AM; Novotny L; Jorio A
    Nat Mater; 2008 Nov; 7(11):878-83. PubMed ID: 18931672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape control of single crystalline bismuth nanostructures.
    Wang WZ; Poudel B; Ma Y; Ren ZF
    J Phys Chem B; 2006 Dec; 110(51):25702-6. PubMed ID: 17181209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of the quantum of thermal conductance.
    Schwab K; Henriksen EA; Worlock JM; Roukes ML
    Nature; 2000 Apr; 404(6781):974-7. PubMed ID: 10801121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.