These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16853895)

  • 61. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.
    Pellis A; Acero EH; Weber H; Obersriebnig M; Breinbauer R; Srebotnik E; Guebitz GM
    Biotechnol J; 2015 Sep; 10(11):1739-49. PubMed ID: 25963883
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of Different End Functional Groups Hyperbranched Polymers-Modified Carbon Nanotubes on the Crystallization and Mechanical Properties of Poly(l-lactic acid) (PLLA).
    Shen B; Xu Y; Zhang Y; Xie Z; Zhang F; Kang J; Cao Y; Xiang M
    ACS Omega; 2022 Nov; 7(47):42939-42948. PubMed ID: 36467920
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture.
    Barbanti SH; Santos AR; Zavaglia CA; Duek EA
    J Mater Sci Mater Med; 2004 Dec; 15(12):1315-21. PubMed ID: 15747184
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor.
    Ma Z; Gao C; Gong Y; Shen J
    Biomaterials; 2005 Apr; 26(11):1253-9. PubMed ID: 15475055
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Preparation of interferon-alpha-loaded poly-L-lactic acid lamellar particles].
    Li X; Chen X; Liu J; Cao W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):559-62. PubMed ID: 12561346
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC
    J Phys Chem B; 2011 Sep; 115(38):11029-37. PubMed ID: 21838279
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Facile covalent attachment of well-defined poly(t-butyl acrylate) on carbon nanotubes via radical addition reaction.
    Oh SB; Kim HL; Chang JH; Lee YW; Han JH; An SS; Joo SW; Kim HK; Choi IS; Paik HJ
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4598-602. PubMed ID: 19049066
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chondrocyte behaviors on poly-L-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups.
    Ma Z; Gao C; Gong Y; Shen J
    Biomaterials; 2003 Sep; 24(21):3725-30. PubMed ID: 12818544
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bionanohybrid based on bioplastic and surface-functionalized carbon nanotubes.
    Singh R; Ray SS
    J Nanosci Nanotechnol; 2010 Dec; 10(12):7976-80. PubMed ID: 21121286
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PLA/POSS nanofibers: a novel system for the immobilization of metal nanoparticles.
    Gardella L; Basso A; Prato M; Monticelli O
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7688-92. PubMed ID: 23945052
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface modification of poly(L-lactic acid) with biomolecules to promote endothelialization.
    Xia Y; Boey F; Venkatraman SS
    Biointerphases; 2010 Sep; 5(3):FA32-40. PubMed ID: 21171711
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Immobilization of peptides by ozone activation to promote the osteoconductivity of PLLA substrates.
    Lee JJ; Ho MH; Hsiao SW
    J Biomater Sci Polym Ed; 2008; 19(12):1637-48. PubMed ID: 19017476
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An optical microscopy study on the phase structure of poly(L-lactide acid)/poly(propylene carbonate) blends.
    Gao M; Ren Z; Yan S; Sun J; Chen X
    J Phys Chem B; 2012 Aug; 116(32):9832-7. PubMed ID: 22827324
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent.
    Meyer F; Raquez JM; Verge P; Martínez de Arenaza I; Coto B; Van Der Voort P; Meaurio E; Dervaux B; Sarasua JR; Du Prez F; Dubois P
    Biomacromolecules; 2011 Nov; 12(11):4086-94. PubMed ID: 21936499
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Time of flight secondary ion mass spectrometry surface and in-depth study of degradation of nanosheet poly(L-lactic acid) films.
    Marchany MD; Gardella JA; Kuchera TJ
    Biointerphases; 2015 Mar; 10(1):019010. PubMed ID: 25708640
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characteristic chain-end racemization behavior during photolysis of poly(L-lactic acid).
    Yasuda N; Tsukegi T; Shirai Y; Nishida H
    Biomacromolecules; 2011 Sep; 12(9):3299-304. PubMed ID: 21790202
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nucleation and growth rates of poly(L-lactic acid) microparticles during precipitation with a compressed-fluid antisolvent.
    Jarmer DJ; Lengsfeld CS; Randolph TW
    Langmuir; 2004 Aug; 20(17):7254-64. PubMed ID: 15301513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.