BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 16853946)

  • 1. Acidity of a Cu-bound histidine in the binuclear center of cytochrome C oxidase.
    Fadda E; Chakrabarti N; Pomès R
    J Phys Chem B; 2005 Dec; 109(47):22629-40. PubMed ID: 16853946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase.
    Popovic DM; Stuchebrukhov AA
    Photochem Photobiol Sci; 2006 Jun; 5(6):611-20. PubMed ID: 16761090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating.
    Popović DM; Stuchebrukhov AA
    FEBS Lett; 2004 May; 566(1-3):126-30. PubMed ID: 15147881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Acidity of a Cu-bound histidine in the binuclear center of cytochrome c oxidase".
    Stuchebrukhov AA; Popovic DM
    J Phys Chem B; 2006 Aug; 110(34):17286-7; discussion 17288-9. PubMed ID: 16928028
    [No Abstract]   [Full Text] [Related]  

  • 7. Coordination of CuB in reduced and CO-liganded states of cytochrome bo3 from Escherichia coli. Is chloride ion a cofactor?
    Ralle M; Verkhovskaya ML; Morgan JE; Verkhovsky MI; Wikström M; Blackburn NJ
    Biochemistry; 1999 Jun; 38(22):7185-94. PubMed ID: 10353829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational resonances and CuB displacement controlled by proton motion in cytochrome c oxidase.
    Daskalakis V; Farantos SC; Guallar V; Varotsis C
    J Phys Chem B; 2010 Jan; 114(2):1136-43. PubMed ID: 19961168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic pKa analysis of Glu286 in cytochrome c oxidase (Rhodobacter sphaeroides): toward a calibrated molecular model.
    Ghosh N; Prat-Resina X; Gunner MR; Cui Q
    Biochemistry; 2009 Mar; 48(11):2468-85. PubMed ID: 19243111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand.
    Pesavento RP; Pratt DA; Jeffers J; van der Donk WA
    Dalton Trans; 2006 Jul; (27):3326-37. PubMed ID: 16820845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Could redox-switched binding of a redox-active ligand to a copper(II) centre drive a conformational proton pump gate? A synthetic model study.
    He Z; Colbran SB; Craig DC
    Chemistry; 2003 Jan; 9(1):116-29. PubMed ID: 12506370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved density functional theory/electrostatic calculation of the His291 protonation state in cytochrome C oxidase: self-consistent charges for solvation energy calculation.
    Makhov DV; Popović DM; Stuchebrukhov AA
    J Phys Chem B; 2006 Jun; 110(24):12162-6. PubMed ID: 16800531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu XAS shows a change in the ligation of CuB upon reduction of cytochrome bo3 from Escherichia coli.
    Osborne JP; Cosper NJ; Stälhandske CM; Scott RA; Alben JO; Gennis RB
    Biochemistry; 1999 Apr; 38(14):4526-32. PubMed ID: 10194374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton exit channels in bovine cytochrome c oxidase.
    Popović DM; Stuchebrukhov AA
    J Phys Chem B; 2005 Feb; 109(5):1999-2006. PubMed ID: 16851184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides.
    Jünemann S; Meunier B; Gennis RB; Rich PR
    Biochemistry; 1997 Nov; 36(47):14456-64. PubMed ID: 9398164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D; Morgan JE; Gennis RB
    Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.