BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16853975)

  • 1. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper.
    Wu X; Bai H; Zhang J; Chen F; Shi G
    J Phys Chem B; 2005 Dec; 109(48):22836-42. PubMed ID: 16853975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films.
    Zhang W; Wen X; Yang S
    Inorg Chem; 2003 Aug; 42(16):5005-14. PubMed ID: 12895126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithography inside Cu(OH)2 nanorods: a general route to controllable synthesis of the arrays of copper chalcogenide nanotubes with double walls.
    Xu J; Zhang W; Yang Z; Yang S
    Inorg Chem; 2008 Jan; 47(2):699-704. PubMed ID: 18078334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Growth of a Cu(OH)
    Anantharaj S; Sugime H; Noda S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27327-27338. PubMed ID: 32459085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of CuO pricky microspheres with tunable size by a simple solution route.
    Xu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Jul; 109(28):13561-6. PubMed ID: 16852697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile solution-chemistry method for Cu(OH)2 nanoribbon arrays with noticeable electrochemical hydrogen storage ability at room temperature.
    Gao P; Zhang M; Niu Z; Xiao Q
    Chem Commun (Camb); 2007 Dec; (48):5197-9. PubMed ID: 18060140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue.
    Yang M; He J
    J Colloid Interface Sci; 2011 Mar; 355(1):15-22. PubMed ID: 21186032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium Persulfate Pre-treatment of Copper Foils Enabling Homogenous Growth of Cu(OH)
    Gustavsen KR; Johannessen EA; Wang K
    ChemistryOpen; 2022 Oct; 11(10):e202200133. PubMed ID: 36175173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general strategy to fabricate simple polyoxometalate nanostructures: electrochemistry-assisted laser ablation in liquid.
    Liu P; Liang Y; Lin X; Wang C; Yang G
    ACS Nano; 2011 Jun; 5(6):4748-55. PubMed ID: 21609026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.
    Zhong JH; Li GR; Wang ZL; Ou YN; Tong YX
    Inorg Chem; 2011 Feb; 50(3):757-63. PubMed ID: 21182331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties.
    Yu Q; Huang H; Chen R; Wang P; Yang H; Gao M; Peng X; Ye Z
    Nanoscale; 2012 Apr; 4(8):2613-20. PubMed ID: 22426955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe(2)O(3) nanostructures and nanostructured arrays.
    Zhou H; Wong SS
    ACS Nano; 2008 May; 2(5):944-58. PubMed ID: 19206492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of Copper Oxide Nanoneedle Electrosynthesis Applied in the Degradation of Methylene Blue.
    Oyarzún DP; Tello A; Sánchez J; Boulett A; Linarez Pérez OE; Martin-Trasanco R; Pizarro GDC; Flores M; Zúñiga C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.