These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 16854025)
41. Improved determination of structural changes of 2-pyridone-(H2O)1 upon electronic excitation. Brause R; Schmitt M; Kleinermanns K J Phys Chem A; 2007 May; 111(17):3287-93. PubMed ID: 17419594 [TBL] [Abstract][Full Text] [Related]
42. Conformational isomerization of formic acid by vibrational excitation at energies below the torsional barrier. Pettersson M; Maçôas EM; Khriachtchev L; Fausto R; Räsänen M J Am Chem Soc; 2003 Apr; 125(14):4058-9. PubMed ID: 12670221 [TBL] [Abstract][Full Text] [Related]
43. Hydrogen-bond patterns of dialkylpyridone iron chelators and their 1:1 formic acid solvates: description, prediction, and role in crystal packing. Ghosh S; Adsmond DA; Huotari J; Grant DJ J Pharm Sci; 1993 Sep; 82(9):901-11. PubMed ID: 8229688 [TBL] [Abstract][Full Text] [Related]
44. Locations and reorientations of multi-ring-fused 2-pyridones in ganglioside G(M1) micelles. Šachl R; Rosenbaum E; Sellstedt M; Almqvist F; Johansson LB Langmuir; 2011 Mar; 27(5):1662-7. PubMed ID: 21210677 [TBL] [Abstract][Full Text] [Related]
45. Molecular modeling analysis: "Why is 2-hydroxypyridine soluble in water but not 3-hydroxypyridine?". Huq F; Yu JQ J Mol Model; 2002 Mar; 8(3):81-6. PubMed ID: 12111395 [TBL] [Abstract][Full Text] [Related]
46. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. Moyon NS; Mitra S J Phys Chem A; 2011 Mar; 115(12):2456-64. PubMed ID: 21388154 [TBL] [Abstract][Full Text] [Related]
47. Relationships between solution thermodynamics and hydrogen-bond patterns of crystalline dialkylhydroxypyridone iron chelators and their formic acid solvates. Ghosh S; Adsmond DA; Grant DJ J Pharm Sci; 1995 May; 84(5):568-74. PubMed ID: 7658346 [TBL] [Abstract][Full Text] [Related]
48. From 2-hydroxypyridine to 4(3H)-pyrimidinone: computational study on the control of the tautomeric equilibrium. Galvão TL; Rocha IM; Ribeiro da Silva MD; Ribeiro da Silva MA J Phys Chem A; 2013 Nov; 117(47):12668-74. PubMed ID: 24205994 [TBL] [Abstract][Full Text] [Related]
50. Role of conformational isomerism in solvent-mediated charge transfer in chiral (S) 1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM): condensed-phase to jet-cooled spectroscopic studies. Chakraborty A; Guchhait N; Le Barbu-Debus K; Mahjoub A; Lepère V; Zehnacker-Rentien A J Phys Chem A; 2011 Sep; 115(34):9354-64. PubMed ID: 21344939 [TBL] [Abstract][Full Text] [Related]
51. Theoretical study of 5-aminolevulinic acid tautomerization: a novel self-catalyzed mechanism. Erdtman E; Eriksson LA J Phys Chem A; 2008 May; 112(18):4367-74. PubMed ID: 18416542 [TBL] [Abstract][Full Text] [Related]
52. Hydrogen bonding between formic acid and water: complete stabilization of the intrinsically unstable conformer. Marushkevich K; Khriachtchev L; Räsänen M J Phys Chem A; 2007 Mar; 111(11):2040-2. PubMed ID: 17388271 [TBL] [Abstract][Full Text] [Related]
53. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Brovarets' OO; Hovorun DM J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623 [TBL] [Abstract][Full Text] [Related]
54. Structural characterization of electron-induced proton transfer in the formic acid dimer anion, (HCOOH)2-, with vibrational and photoelectron spectroscopies. Gerardi HK; DeBlase AF; Leavitt CM; Su X; Jordan KD; McCoy AB; Johnson MA J Chem Phys; 2012 Apr; 136(13):134318. PubMed ID: 22482563 [TBL] [Abstract][Full Text] [Related]
55. Excited-state triple-proton transfer in 7-azaindole(H(2)O)(2) and reaction path studied by electronic spectroscopy in the gas phase and quantum chemical calculations. Sakota K; Jouvet C; Dedonder C; Fujii M; Sekiya H J Phys Chem A; 2010 Oct; 114(42):11161-6. PubMed ID: 20695629 [TBL] [Abstract][Full Text] [Related]
56. Structure of hydrated clusters of dibenzo-18-crown-6-ether in a supersonic jet--encapsulation of water molecules in the crown cavity. Kusaka R; Inokuchi Y; Ebata T Phys Chem Chem Phys; 2008 Nov; 10(41):6238-44. PubMed ID: 18936847 [TBL] [Abstract][Full Text] [Related]
58. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
59. Evidence for two forms, double hydrogen tunneling, and proximity of excited states in bridge-substituted porphycenes: supersonic jet studies. Vdovin A; Sepioł J; Urbańska N; Pietraszkiewicz M; Mordziński A; Waluk J J Am Chem Soc; 2006 Mar; 128(8):2577-86. PubMed ID: 16492041 [TBL] [Abstract][Full Text] [Related]
60. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]