These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16854098)

  • 1. The reactivity of all-metal aromatic complexes: a theoretical investigation on the methane activation reaction.
    Hu X; Li H; Wang C
    J Phys Chem B; 2006 Jul; 110(29):14046-9. PubMed ID: 16854098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-metal aromatic complexes show high reactivity in the oxidation reaction of methane and some hydrocarbons.
    Hu X; Li H
    J Phys Chem A; 2007 Aug; 111(34):8352-6. PubMed ID: 17683124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of the ring current in the all-metal aromatic, Al(4)(2-).
    Havenith RW; Fowler PW
    Phys Chem Chem Phys; 2006 Aug; 8(29):3383-6. PubMed ID: 16855715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes.
    Xi Z; Liu B; Chen W
    J Org Chem; 2008 May; 73(10):3954-7. PubMed ID: 18412386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromaticity and antiaromaticity in transition-metal systems.
    Zubarev DY; Averkiev BB; Zhai HJ; Wang LS; Boldyrev AI
    Phys Chem Chem Phys; 2008 Jan; 10(2):257-67. PubMed ID: 18213412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic dehydrogenation of ammonia-borane involving an unexpected hydrogen transfer to ligated carbene and subsequent carbon-hydrogen activation.
    Yang X; Hall MB
    J Am Chem Soc; 2008 Feb; 130(6):1798-9. PubMed ID: 18211066
    [No Abstract]   [Full Text] [Related]  

  • 7. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy.
    Zheng H; Ma D; Bao X; Hu JZ; Kwak JH; Wang Y; Peden CH
    J Am Chem Soc; 2008 Mar; 130(12):3722-3. PubMed ID: 18311978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental tools in solving some mechanistic problems in the chemistry of Fischer carbene complexes.
    Sierra MA; Fernández I; Cossío FP
    Chem Commun (Camb); 2008 Oct; (39):4671-82. PubMed ID: 18830460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation of simple aromatic molecules: a computational study of the mechanism.
    Zhong G; Chan B; Radom L
    J Am Chem Soc; 2007 Jan; 129(4):924-33. PubMed ID: 17243829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroaminomethylation with novel rhodium-carbene complexes: an efficient catalytic approach to pharmaceuticals.
    Ahmed M; Buch C; Routaboul L; Jackstell R; Klein H; Spannenberg A; Beller M
    Chemistry; 2007; 13(5):1594-601. PubMed ID: 17091522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate-aromatic pi interactions: a test of density functionals and the DFT-D method.
    Raju RK; Ramraj A; Hillier IH; Vincent MA; Burton NA
    Phys Chem Chem Phys; 2009 May; 11(18):3411-6. PubMed ID: 19421542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio study of microsolvated Al3+-aromatic amino acid complexes.
    Larrucea J; Rezabal E; Marino T; Russo N; Ugalde JM
    J Phys Chem B; 2010 Jul; 114(27):9017-22. PubMed ID: 20560606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods.
    Rotzinger FP
    Chem Rev; 2005 Jun; 105(6):2003-37. PubMed ID: 15941208
    [No Abstract]   [Full Text] [Related]  

  • 14. Theoretical study on the reactivities of stannylene and plumbylene and the origin of their activation barriers.
    Su MD
    Chemistry; 2004 Nov; 10(23):6073-84. PubMed ID: 15515104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mono- and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring.
    Mercero JM; Matxain JM; Ugalde JM
    Angew Chem Int Ed Engl; 2004 Oct; 43(41):5485-8. PubMed ID: 15484244
    [No Abstract]   [Full Text] [Related]  

  • 16. Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes.
    de Noronha RG; Romão CC; Fernandes AC
    J Org Chem; 2009 Sep; 74(18):6960-4. PubMed ID: 19685891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity tuning of a biomimetic HO-FeV=O oxidant for methane hydroxylation by substituents on aromatic rings: theoretical study.
    Ma Y; Balbuena PB
    J Phys Chem B; 2007 Mar; 111(10):2711-8. PubMed ID: 17315920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical rate constants and kinetic isotope effects in the reaction of methane with H, D, T, and Mu atoms.
    Espinosa-García J
    Phys Chem Chem Phys; 2008 Mar; 10(9):1277-84. PubMed ID: 18292862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy profiles for monomer capture in Grubbs- and SHOP-type olefin polymerization catalysts: a constraint ab initio molecular dynamics study.
    Yang SY; Xiang ML; Chen LJ; Xie GB; Shi B; Wei YQ; Ziegler T
    J Comput Chem; 2007 Jan; 28(2):513-8. PubMed ID: 17186485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors.
    Kubozono Y; Mitamura H; Lee X; He X; Yamanari Y; Takahashi Y; Suzuki Y; Kaji Y; Eguchi R; Akaike K; Kambe T; Okamoto H; Fujiwara A; Kato T; Kosugi T; Aoki H
    Phys Chem Chem Phys; 2011 Oct; 13(37):16476-93. PubMed ID: 21850291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.