BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16854110)

  • 1. Effect of cyclodextrin nanocavity confinement on the photorelaxation of the cardiotonic drug milrinone.
    El-Kemary M; Organero JA; Santos L; Douhal A
    J Phys Chem B; 2006 Jul; 110(29):14128-34. PubMed ID: 16854110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nanocavity confinement on the relaxation of anesthetic analogues: relevance to encapsulated drug photochemistry.
    Tormo L; Organero JA; Douhal A
    J Phys Chem B; 2005 Sep; 109(38):17848-54. PubMed ID: 16853289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cyclodextrin nanocavity confinement on the photophysics of a beta-carboline analogue: a spectroscopic study.
    Das P; Chakrabarty A; Haldar B; Mallick A; Chattopadhyay N
    J Phys Chem B; 2007 Jun; 111(25):7401-8. PubMed ID: 17530799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and biological caging effects on the relaxation of a proton-transfer dye.
    Organero JA; Martin C; Cohen B; Douhal A
    Langmuir; 2008 Sep; 24(18):10352-7. PubMed ID: 18702475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inclusion of Paracetamol into β-cyclodextrin nanocavities in solution and in the solid state.
    El-Kemary M; Sobhy S; El-Daly S; Abdel-Shafi A
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1904-8. PubMed ID: 21703916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast relaxation dynamics of the cardiotonic drug milrinone in water solutions.
    el-Kemary M; Organero JA; Douhal A
    J Med Chem; 2006 Jun; 49(11):3086-91. PubMed ID: 16722628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientational dynamics of a charge transfer complex in cyclodextrin cavity as receptor.
    Sahoo D; Chakravorti S
    Phys Chem Chem Phys; 2008 Oct; 10(38):5890-7. PubMed ID: 18818843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and photodynamics of lumichrome structures in water at different pHs and in chemical and biological caging media.
    Marchena M; Gil M; Martín C; Organero JA; Sanchez F; Douhal A
    J Phys Chem B; 2011 Mar; 115(10):2424-35. PubMed ID: 21332111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the supramolecular systems of 5-(2-hydroxy phenyl)-10,15,20-tris (4-methoxy phenyl) porphyrin with cyclodextrins.
    Kong LH; Guo YJ; Li XX; Pan JH
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):594-8. PubMed ID: 16859961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast dynamics of C30 in solution and within CDs and HSA protein.
    Martin C; Cohen B; Gaamoussi I; Ijjaali M; Douhal A
    J Phys Chem B; 2014 May; 118(21):5760-71. PubMed ID: 24773055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: evidence of cyclodextrins cavity dependent complex stoichiometry.
    Ghosh S; Jana S; Guchhait N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):249-55. PubMed ID: 21996591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caging effects on the ground and excited states of 2,2'-bipyridine-3,3'-diol embedded in cyclodextrins.
    Abou-Zied OK; Al-Hinai AT
    J Phys Chem A; 2006 Jun; 110(25):7835-40. PubMed ID: 16789770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caging and solvent effects on the tautomeric equilibrium of 3-pyridone/3-hydroxypyridine in the ground state: a study in cyclodextrins and binary solvents.
    Abou-Zied OK; Al-Shihi OI
    Phys Chem Chem Phys; 2009 Jul; 11(26):5377-83. PubMed ID: 19551205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive enantiodifferentiating anti-Markovnikov photoaddition of water and methanol to 1,1-diphenylpropene using a sensitizing cyclodextrin host.
    Fukuhara G; Mori T; Inoue Y
    J Org Chem; 2009 Sep; 74(17):6714-27. PubMed ID: 19670899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins: comparison of molecular filter performance.
    Uyar T; Havelund R; Hacaloglu J; Besenbacher F; Kingshott P
    ACS Nano; 2010 Sep; 4(9):5121-30. PubMed ID: 20718443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host-guest interaction of 1,4-dihydroxy-9,10-anthraquinone (quinizarin) with cyclodextrins.
    Kandoth N; Choudhury SD; Mukherjee T; Pal H
    Photochem Photobiol Sci; 2009 Jan; 8(1):82-90. PubMed ID: 19247534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spectroscopic study of the inclusion of azulene by beta- and gamma-cyclodextrins.
    Abou-Zied OK
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):245-51. PubMed ID: 16257721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental study of the inclusion complexes of the 3-carboxy-5,6-benzocoumarinic acid with cyclodextrins.
    Tablet C; Hillebrand M
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):740-8. PubMed ID: 17954037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on the formation of cyclodextrin nanotube by fluorescence and anisotropy measurements].
    Zhang CF; Shen XH; Gao HC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):217-20. PubMed ID: 12961852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: spectral and molecular modeling studies.
    Antony Muthu Prabhu A; Subramanian VK; Rajendiran N
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():95-107. PubMed ID: 22659277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.