These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16854217)

  • 1. Phosphoprotein analysis: from proteins to proteomes.
    Delom F; Chevet E
    Proteome Sci; 2006 Jul; 4():15. PubMed ID: 16854217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tackling the phosphoproteome: tools and strategies.
    Kalume DE; Molina H; Pandey A
    Curr Opin Chem Biol; 2003 Feb; 7(1):64-9. PubMed ID: 12547428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in analysis techniques of phosphoproteome].
    Yang J; Zou QM; Cai SX; Guo G; Zhu YH
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):244-8. PubMed ID: 15966331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome analysis.
    Raggiaschi R; Gotta S; Terstappen GC
    Biosci Rep; 2005; 25(1-2):33-44. PubMed ID: 16222418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of protein phosphorylation by mass spectrometry.
    Areces LB; Matafora V; Bachi A
    Eur J Mass Spectrom (Chichester); 2004; 10(3):383-92. PubMed ID: 15187297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002.
    Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD
    J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific analysis of bacterial phosphoproteomes.
    Macek B; Mijakovic I
    Proteomics; 2011 Aug; 11(15):3002-11. PubMed ID: 21726046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.
    Sharma K; D'Souza RC; Tyanova S; Schaab C; Wiśniewski JR; Cox J; Mann M
    Cell Rep; 2014 Sep; 8(5):1583-94. PubMed ID: 25159151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence.
    Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C
    Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak functional constraints on phosphoproteomes.
    Landry CR; Levy ED; Michnick SW
    Trends Genet; 2009 May; 25(5):193-7. PubMed ID: 19349092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages.
    Malik R; Lenobel R; Santamaria A; Ries A; Nigg EA; Körner R
    J Proteome Res; 2009 Oct; 8(10):4553-63. PubMed ID: 19691289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves.
    Vu LD; Stes E; Van Bel M; Nelissen H; Maddelein D; Inzé D; Coppens F; Martens L; Gevaert K; De Smet I
    J Proteome Res; 2016 Dec; 15(12):4304-4317. PubMed ID: 27643528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective enrichment in phosphopeptides for the identification of phosphorylated mitochondrial proteins.
    Pocsfalvi G
    Methods Enzymol; 2009; 457():81-96. PubMed ID: 19426863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides.
    van der Veken P; Dirksen EH; Ruijter E; Elgersma RC; Heck AJ; Rijkers DT; Slijper M; Liskamp RM
    Chembiochem; 2005 Dec; 6(12):2271-80. PubMed ID: 16254931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomics strategies for the functional analysis of signal transduction.
    Morandell S; Stasyk T; Grosstessner-Hain K; Roitinger E; Mechtler K; Bonn GK; Huber LA
    Proteomics; 2006 Jul; 6(14):4047-56. PubMed ID: 16791829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights from site-specific phosphoproteomics in bacteria.
    Soufi B; Jers C; Hansen ME; Petranovic D; Mijakovic I
    Biochim Biophys Acta; 2008 Jan; 1784(1):186-92. PubMed ID: 17881301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoregulation of the human SMN complex.
    Husedzinovic A; Oppermann F; Draeger-Meurer S; Chari A; Fischer U; Daub H; Gruss OJ
    Eur J Cell Biol; 2014 Mar; 93(3):106-17. PubMed ID: 24602413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-art in phosphoproteomics.
    Reinders J; Sickmann A
    Proteomics; 2005 Nov; 5(16):4052-61. PubMed ID: 16196093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.