BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16854259)

  • 1. Continuous glucose monitoring by means of fiber-based, mid-infrared laser spectroscopy.
    Lambrecht A; Beyer T; Hebestreit K; Mischler R; Petrich W
    Appl Spectrosc; 2006 Jul; 60(7):729-36. PubMed ID: 16854259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro.
    Vrančić C; Fomichova A; Gretz N; Herrmann C; Neudecker S; Pucci A; Petrich W
    Analyst; 2011 Mar; 136(6):1192-8. PubMed ID: 21274463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive blood glucose measurement by Fourier transform infrared spectroscopic analysis through the mucous membrane of the lip: application of a chalcogenide optical fiber system.
    Uemura T; Nishida K; Sakakida M; Ichinose K; Shimoda S; Shichiri M
    Front Med Biol Eng; 1999; 9(2):137-53. PubMed ID: 10450500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum.
    Martin WB; Mirov S; Venugopalan R
    Appl Spectrosc; 2005 Jul; 59(7):881-4. PubMed ID: 16053558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y; Kino S; Katagiri T
    Appl Opt; 2009 Oct; 48(28):5396-400. PubMed ID: 19798380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose quantification in dried-down nanoliter samples using mid-infrared attenuated total reflection spectroscopy.
    Diessel E; Willmann S; Kamphaus P; Kurte R; Damm U; Heise HM
    Appl Spectrosc; 2004 Apr; 58(4):442-50. PubMed ID: 15104814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy.
    Kino S; Matsuura Y
    Appl Spectrosc; 2007 Dec; 61(12):1334-7. PubMed ID: 18198025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measurement of blood glucose concentration using infra-red spectroscopy].
    Shichiri M; Nishida K; Uemura T
    Nihon Rinsho; 1997 Nov; 55 Suppl():895-9. PubMed ID: 9434583
    [No Abstract]   [Full Text] [Related]  

  • 9. In vivo glucose monitoring: the clinical reality and the promise.
    Pickup JC; Hussain F; Evans ND; Sachedina N
    Biosens Bioelectron; 2005 Apr; 20(10):1897-902. PubMed ID: 15741056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
    Riley MR; Lucas P; Le Coq D; Juncker C; Boesewetter DE; Collier JL; DeRosa DM; Katterman ME; Boussard-Plédel C; Bureau B
    Biotechnol Bioeng; 2006 Nov; 95(4):599-612. PubMed ID: 16900468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase.
    Brandstetter M; Genner A; Anic K; Lendl B
    Analyst; 2010 Dec; 135(12):3260-5. PubMed ID: 21046025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers.
    Schaden S; Haberkorn M; Frank J; Baena JR; Lendl B
    Appl Spectrosc; 2004 Jun; 58(6):667-70. PubMed ID: 15198817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable laser diode system for noninvasive blood glucose measurements.
    Olesberg JT; Arnold MA; Mermelstein C; Schmitz J; Wagner J
    Appl Spectrosc; 2005 Dec; 59(12):1480-4. PubMed ID: 16390586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative look inside the body: minimally invasive infrared analysis in vivo.
    Vrančić C; Kröger N; Gretz N; Neudecker S; Pucci A; Petrich W
    Anal Chem; 2014 Nov; 86(21):10511-4. PubMed ID: 25329042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy.
    Heise HM; Marbach R
    Cell Mol Biol (Noisy-le-grand); 1998 Sep; 44(6):899-912. PubMed ID: 9763193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy.
    Mendelson Y; Clermont AC; Peura RA; Lin BC
    IEEE Trans Biomed Eng; 1990 May; 37(5):458-65. PubMed ID: 2345001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement.
    Pleitez M; von Lilienfeld-Toal H; Mäntele W
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):61-5. PubMed ID: 22000639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane.
    Campbell DW; Müller C; Reardon KF
    Biotechnol Lett; 2006 Jun; 28(12):883-7. PubMed ID: 16786273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques.
    Wu JG; Xu YZ; Sun CW; Soloway RD; Xu DF; Wu QG; Sun KH; Weng SF; Xu GX
    Biopolymers; 2001; 62(4):185-92. PubMed ID: 11391568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.