BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16854265)

  • 1. Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid.
    Dable BK; Love BA; Battaglia TM; Booksh KS; Lilley MD; Marquardt BJ
    Appl Spectrosc; 2006 Jul; 60(7):773-80. PubMed ID: 16854265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.
    Tarasov VG
    Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and biogeography of deep-sea vent and seep invertebrates.
    Van Dover CL; German CR; Speer KG; Parson LM; Vrijenhoek RC
    Science; 2002 Feb; 295(5558):1253-7. PubMed ID: 11847331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata.
    Shillito B; Le Bris N; Hourdez S; Ravaux J; Cottin D; Caprais JC; Jollivet D; Gaill F
    J Exp Biol; 2006 Mar; 209(Pt 5):945-55. PubMed ID: 16481583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.
    McCliment EA; Voglesonger KM; O'Day PA; Dunn EE; Holloway JR; Cary SC
    Environ Microbiol; 2006 Jan; 8(1):114-25. PubMed ID: 16343327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana.
    Pradillon F; Le Bris N; Shillito B; Young CM; Gaill F
    J Exp Biol; 2005 Apr; 208(Pt 8):1551-61. PubMed ID: 15802678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.
    Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA
    Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral-microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy.
    Breier JA; White SN; German CR
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3067-86. PubMed ID: 20529945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Structure and geography of hydrothermal communities in the Global ocean].
    Galkin SV
    Zh Obshch Biol; 2010; 71(3):205-18. PubMed ID: 20583633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organics in chimneys and water samples from deep-sea hydrothermal systems: implications for sub-vent biosphere.
    Horiuchi T; Kobayashi K; Takano Y; Marumo K; Nakashima M; Yamagishi A; Ishibashi J; Urabe T
    Biol Sci Space; 2003 Oct; 17(3):190-1. PubMed ID: 14676368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an in situ fiber optic Raman system to monitor hydrothermal vents.
    Battaglia TM; Dunn EE; Lilley MD; Holloway J; Dable BK; Marquardt BJ; Booksh KS
    Analyst; 2004 Jul; 129(7):602-6. PubMed ID: 15213826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy.
    Lijour Y; Gentric E; Deslandes E; Guezennec J
    Anal Biochem; 1994 Aug; 220(2):244-8. PubMed ID: 7978265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field.
    López-García P; Vereshchaka A; Moreira D
    Environ Microbiol; 2007 Feb; 9(2):546-54. PubMed ID: 17222152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature.
    Girguis PR; Childress JJ
    J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional adaptations in deep-sea hemoglobins.
    Hourdez S; Weber RE
    J Inorg Biochem; 2005 Jan; 99(1):130-41. PubMed ID: 15598497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy.
    White SN
    Appl Spectrosc; 2010 Jul; 64(7):819-27. PubMed ID: 20615296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of mobile Raman instrumentation for art analysis.
    Vandenabeele P; Castro K; Hargreaves M; Moens L; Madariaga JM; Edwards HG
    Anal Chim Acta; 2007 Apr; 588(1):108-16. PubMed ID: 17386799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents.
    Elsaied H; Stokes HW; Nakamura T; Kitamura K; Fuse H; Maruyama A
    Environ Microbiol; 2007 Sep; 9(9):2298-312. PubMed ID: 17686026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge.
    Chausson F; Sanglier S; Leize E; Hagège A; Bridges CR; Sarradin PM; Shillito B; Lallier FH; Zal F
    Micron; 2004; 35(1-2):31-41. PubMed ID: 15036285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae.
    Kojima S; Fujikura K; Okutani T
    Mol Phylogenet Evol; 2004 Jul; 32(1):396-406. PubMed ID: 15186824
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.