These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 16854265)
1. Characterization and quantitation of a tertiary mixture of salts by Raman spectroscopy in simulated hydrothermal vent fluid. Dable BK; Love BA; Battaglia TM; Booksh KS; Lilley MD; Marquardt BJ Appl Spectrosc; 2006 Jul; 60(7):773-80. PubMed ID: 16854265 [TBL] [Abstract][Full Text] [Related]
2. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Tarasov VG Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453 [TBL] [Abstract][Full Text] [Related]
3. Evolution and biogeography of deep-sea vent and seep invertebrates. Van Dover CL; German CR; Speer KG; Parson LM; Vrijenhoek RC Science; 2002 Feb; 295(5558):1253-7. PubMed ID: 11847331 [TBL] [Abstract][Full Text] [Related]
4. Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. Shillito B; Le Bris N; Hourdez S; Ravaux J; Cottin D; Caprais JC; Jollivet D; Gaill F J Exp Biol; 2006 Mar; 209(Pt 5):945-55. PubMed ID: 16481583 [TBL] [Abstract][Full Text] [Related]
5. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage. McCliment EA; Voglesonger KM; O'Day PA; Dunn EE; Holloway JR; Cary SC Environ Microbiol; 2006 Jan; 8(1):114-25. PubMed ID: 16343327 [TBL] [Abstract][Full Text] [Related]
6. Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana. Pradillon F; Le Bris N; Shillito B; Young CM; Gaill F J Exp Biol; 2005 Apr; 208(Pt 8):1551-61. PubMed ID: 15802678 [TBL] [Abstract][Full Text] [Related]
7. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216 [TBL] [Abstract][Full Text] [Related]
8. Mineral-microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy. Breier JA; White SN; German CR Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3067-86. PubMed ID: 20529945 [TBL] [Abstract][Full Text] [Related]
9. [Structure and geography of hydrothermal communities in the Global ocean]. Galkin SV Zh Obshch Biol; 2010; 71(3):205-18. PubMed ID: 20583633 [TBL] [Abstract][Full Text] [Related]
10. Organics in chimneys and water samples from deep-sea hydrothermal systems: implications for sub-vent biosphere. Horiuchi T; Kobayashi K; Takano Y; Marumo K; Nakashima M; Yamagishi A; Ishibashi J; Urabe T Biol Sci Space; 2003 Oct; 17(3):190-1. PubMed ID: 14676368 [TBL] [Abstract][Full Text] [Related]
11. Development of an in situ fiber optic Raman system to monitor hydrothermal vents. Battaglia TM; Dunn EE; Lilley MD; Holloway J; Dable BK; Marquardt BJ; Booksh KS Analyst; 2004 Jul; 129(7):602-6. PubMed ID: 15213826 [TBL] [Abstract][Full Text] [Related]
12. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Lijour Y; Gentric E; Deslandes E; Guezennec J Anal Biochem; 1994 Aug; 220(2):244-8. PubMed ID: 7978265 [TBL] [Abstract][Full Text] [Related]
13. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. López-García P; Vereshchaka A; Moreira D Environ Microbiol; 2007 Feb; 9(2):546-54. PubMed ID: 17222152 [TBL] [Abstract][Full Text] [Related]
14. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
15. Molecular and functional adaptations in deep-sea hemoglobins. Hourdez S; Weber RE J Inorg Biochem; 2005 Jan; 99(1):130-41. PubMed ID: 15598497 [TBL] [Abstract][Full Text] [Related]
16. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. White SN Appl Spectrosc; 2010 Jul; 64(7):819-27. PubMed ID: 20615296 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of mobile Raman instrumentation for art analysis. Vandenabeele P; Castro K; Hargreaves M; Moens L; Madariaga JM; Edwards HG Anal Chim Acta; 2007 Apr; 588(1):108-16. PubMed ID: 17386799 [TBL] [Abstract][Full Text] [Related]
18. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Elsaied H; Stokes HW; Nakamura T; Kitamura K; Fuse H; Maruyama A Environ Microbiol; 2007 Sep; 9(9):2298-312. PubMed ID: 17686026 [TBL] [Abstract][Full Text] [Related]
19. Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Chausson F; Sanglier S; Leize E; Hagège A; Bridges CR; Sarradin PM; Shillito B; Lallier FH; Zal F Micron; 2004; 35(1-2):31-41. PubMed ID: 15036285 [TBL] [Abstract][Full Text] [Related]
20. Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae. Kojima S; Fujikura K; Okutani T Mol Phylogenet Evol; 2004 Jul; 32(1):396-406. PubMed ID: 15186824 [No Abstract] [Full Text] [Related] [Next] [New Search]