BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16854270)

  • 1. Quantitative time-resolved fluorescence spectra of the cortical sarcoma and the adjacent normal tissue determined with an in vivo experimental method and theoretical model.
    Li Y; Li M; Xu T
    Appl Spectrosc; 2006 Jul; 60(7):808-12. PubMed ID: 16854270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative time-resolved fluorescence spectrum of the cortical sarcoma and the adjacent normal tissue.
    Li Y; Li M; Xu T
    J Fluoresc; 2007 Nov; 17(6):643-8. PubMed ID: 16794874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.
    Pfefer TJ; Wang Q; Drezek RA
    Comput Methods Programs Biomed; 2011 Nov; 104(2):161-7. PubMed ID: 21111507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PoDFluX: a new Monte Carlo ray-tracing model for powder diffraction and fluorescence.
    Hansford GM
    Rev Sci Instrum; 2009 Jul; 80(7):073903. PubMed ID: 19655961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence detection of tumors in the human lung--spectroscopical measurements in situ, in an in vivo model and in vitro.
    Hüttenberger D; Gabrecht T; Wagnières G; Weber B; Linder A; Foth HJ; Freitag L
    Photodiagnosis Photodyn Ther; 2008 Jun; 5(2):139-47. PubMed ID: 19356645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of brain NADH in the presence of hemoglobin using microfiber spectrofluorometry: a pre-calibration approach.
    Qiu L; Zhao W; Sick T
    Comput Biol Med; 2005 Oct; 35(7):583-601. PubMed ID: 15809097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periosteal margin in soft-tissue sarcoma.
    Lin PP; Pino ED; Normand AN; Deavers MT; Cannon CP; Ballo MT; Pisters PW; Pollock RE; Lewis VO; Zagars GK; Yasko AW
    Cancer; 2007 Feb; 109(3):598-602. PubMed ID: 17183556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Surgical margins in soft tissue sarcoma].
    Stoeckle E; Italiano A; Stock N; Kind M; Kantor G; Coindre JM; Bui BN
    Bull Cancer; 2008 Dec; 95(12):1199-204. PubMed ID: 19091654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of optical clearing agents on the in vivo optical properties of squamous epithelial tissue.
    Millon SR; Roldan-Perez KM; Riching KM; Palmer GM; Ramanujam N
    Lasers Surg Med; 2006 Dec; 38(10):920-7. PubMed ID: 17163473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetics of Photogem using fluorescence monitoring in Wistar rats.
    Melo CA; Kurachi C; Grecco C; Sibata CH; Castro-e-Silva O; Bagnato VS
    J Photochem Photobiol B; 2004 Feb; 73(3):183-8. PubMed ID: 14975407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium.
    Wojtkiewicz S; Liebert A; Rix H; Zołek N; Maniewski R
    Phys Med Biol; 2009 Feb; 54(3):679-97. PubMed ID: 19131674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding light on biomolecule conformational dynamics using fluorescence measurements of trapped ions.
    Iavarone AT; Duft D; Parks JH
    J Phys Chem A; 2006 Nov; 110(47):12714-27. PubMed ID: 17125284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model.
    Nair MS; Ghosh N; Raju NS; Pradhan A
    Appl Opt; 2002 Jul; 41(19):4024-35. PubMed ID: 12099614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myxoinflammatory fibroblastic sarcoma in an unreported area (groin).
    Bar-Meir E; Fridman E; Zilinsky I; Orenstein A; Winkler E
    J Cutan Pathol; 2007 Mar; 34(3):276-80. PubMed ID: 17302613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations.
    Jaillon F; Zheng W; Huang Z
    Phys Med Biol; 2008 Feb; 53(4):937-51. PubMed ID: 18263950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.