BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3684 related articles for article (PubMed ID: 16854363)

  • 1. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow.
    Tcholakova S; Denkov ND; Danner T
    Langmuir; 2004 Aug; 20(18):7444-58. PubMed ID: 15323488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant.
    Binks BP; Desforges A; Duff DG
    Langmuir; 2007 Jan; 23(3):1098-106. PubMed ID: 17241019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emulsion flocculation stability of protein-carbohydrate diblock copolymers.
    Wooster TJ; Augustin MA
    J Colloid Interface Sci; 2007 Sep; 313(2):665-75. PubMed ID: 17540395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles.
    Yang F; Niu Q; Lan Q; Sun D
    J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method.
    Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E
    J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric surfactants in disperse systems.
    Tadros T
    Adv Colloid Interface Sci; 2009; 147-148():281-99. PubMed ID: 19041086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with beta-lactoglobulin.
    Ye A; Singh H
    J Colloid Interface Sci; 2006 Mar; 295(1):249-54. PubMed ID: 16139288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface forces in model oil-in-water emulsions stabilized by proteins.
    Dimitrova TD; Leal-Calderon F; Gurkov TD; Campbell B
    Adv Colloid Interface Sci; 2004 May; 108-109():73-86. PubMed ID: 15072930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin.
    Jiménez-Flores R; Ye A; Singh H
    J Agric Food Chem; 2005 May; 53(10):4213-9. PubMed ID: 15884863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of iota-carrageenan on droplet flocculation of beta-lactoglobulin-stabilized oil-in-water emulsions during thermal processing.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2004 Oct; 20(22):9565-70. PubMed ID: 15491187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 185.