These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16854370)

  • 1. To see or not to see: lateral organization of biological membranes and fluorescence microscopy.
    Bagatolli LA
    Biochim Biophys Acta; 2006 Oct; 1758(10):1541-56. PubMed ID: 16854370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton excitation fluorescence microscopy in planar membrane systems.
    Brewer J; Bernardino de la Serna J; Wagner K; Bagatolli LA
    Biochim Biophys Acta; 2010 Jul; 1798(7):1301-8. PubMed ID: 20226161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence microscopy to study pressure between lipids in giant unilamellar vesicles.
    Celli A; Lee CY; Gratton E
    Methods Mol Biol; 2007; 400():333-9. PubMed ID: 17951744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers.
    Bagatolli LA; Sanchez SA; Hazlett T; Gratton E
    Methods Enzymol; 2003; 360():481-500. PubMed ID: 12622164
    [No Abstract]   [Full Text] [Related]  

  • 5. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.
    Dodes Traian MM; Flecha FLG; Levi V
    J Lipid Res; 2012 Mar; 53(3):609-616. PubMed ID: 22184757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surfactin on membrane models displaying lipid phase separation.
    Deleu M; Lorent J; Lins L; Brasseur R; Braun N; El Kirat K; Nylander T; Dufrêne YF; Mingeot-Leclercq MP
    Biochim Biophys Acta; 2013 Feb; 1828(2):801-15. PubMed ID: 23159483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes.
    Parasassi T; Gratton E; Yu WM; Wilson P; Levi M
    Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the charged headgroup determines the fusogenic potential and membrane properties of lithocholic acid phospholipids.
    Bhargava P; Singh M; Sreekanth V; Bajaj A
    J Phys Chem B; 2014 Aug; 118(31):9341-8. PubMed ID: 25029367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
    Picardi MV; Cruz A; Orellana G; Pérez-Gil J
    Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins.
    Sánchez SA; Tricerri MA; Ossato G; Gratton E
    Biochim Biophys Acta; 2010 Jul; 1798(7):1399-408. PubMed ID: 20347719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.
    Stock RP; Brewer J; Wagner K; Ramos-Cerrillo B; Duelund L; Jernshøj KD; Olsen LF; Bagatolli LA
    PLoS One; 2012; 7(4):e36003. PubMed ID: 22558302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence detection of signs of sterol superlattice formation in lipid membranes.
    Chong PL; Venegas B; Olsher M
    Methods Mol Biol; 2007; 400():159-70. PubMed ID: 17951733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes.
    Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong modulation of two-photon excited fluorescence of quadripolar dyes by (de)protonation.
    Werts MH; Gmouh S; Mongin O; Pons T; Blanchard-Desce M
    J Am Chem Soc; 2004 Dec; 126(50):16294-5. PubMed ID: 15600310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development.
    Bonaventura G; Barcellona ML; Golfetto O; Nourse JL; Flanagan LA; Gratton E
    Cell Biochem Biophys; 2014 Nov; 70(2):785-94. PubMed ID: 24839062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of rhamnolipids with model biomembranes of varying complexity.
    Herzog M; Tiso T; Blank LM; Winter R
    Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183431. PubMed ID: 32750318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segregation of saturated chain lipids in pulmonary surfactant films and bilayers.
    Nag K; Pao JS; Harbottle RR; Possmayer F; Petersen NO; Bagatolli LA
    Biophys J; 2002 Apr; 82(4):2041-51. PubMed ID: 11916861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.