These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16854793)
1. Permeate flux optimisation of a pilot microfiltration plant for cost-effectiveness of water reclamation for reuse. Xie RJ; Gomez MJ; Xing YJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1169-81. PubMed ID: 16854793 [TBL] [Abstract][Full Text] [Related]
2. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
3. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis. Downing JB; Bracco E; Green FB; Ku AY; Lundquist TJ; Zubieta IX; Oswald WJ Water Sci Technol; 2002; 45(1):117-25. PubMed ID: 11833725 [TBL] [Abstract][Full Text] [Related]
4. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change. Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092 [TBL] [Abstract][Full Text] [Related]
5. Treatment of vegetable oily wastewater using an integrated microfiltration-reverse osmosis system. Yu X; Zhong Z; Xing W Water Sci Technol; 2010; 61(2):455-62. PubMed ID: 20107272 [TBL] [Abstract][Full Text] [Related]
6. Precoagulation-microfiltration for wastewater reuse. Hatt JW; Germain E; Judd SJ Water Res; 2011 Dec; 45(19):6471-8. PubMed ID: 21986101 [TBL] [Abstract][Full Text] [Related]
7. Removal of coliphages in secondary effluent by microfiltration-mechanisms of removal and impact of operating parameters. Farahbakhsh K; Smith DW Water Res; 2004 Feb; 38(3):585-92. PubMed ID: 14723927 [TBL] [Abstract][Full Text] [Related]
8. The substitution of sand filtration by immersed-UF for surface water treatment: pilot-scale studies. Lihua S; Xing L; Guoyu Z; Jie C; Zhe X; Guibai L Water Sci Technol; 2009; 60(9):2337-43. PubMed ID: 19901465 [TBL] [Abstract][Full Text] [Related]
9. Recovery of reusable water from sewage using aerated flat-sheet membranes. Diamantis VI; Antoniou I; Athanasoulia E; Melidis P; Aivasidis A Water Sci Technol; 2010; 62(12):2769-75. PubMed ID: 21123905 [TBL] [Abstract][Full Text] [Related]
10. A crossflow filtration system for constant permeate flux membrane fouling characterization. Miller DJ; Paul DR; Freeman BD Rev Sci Instrum; 2013 Mar; 84(3):035003. PubMed ID: 23556842 [TBL] [Abstract][Full Text] [Related]
11. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study. Loganathan K; Chelme-Ayala P; El-Din MG J Environ Manage; 2015 Mar; 151():540-9. PubMed ID: 25596922 [TBL] [Abstract][Full Text] [Related]
12. Influence of filtration conditions on membrane fouling and scouring aeration effectiveness in submerged membrane bioreactors to treat municipal wastewater. Nywening JP; Zhou H Water Res; 2009 Aug; 43(14):3548-58. PubMed ID: 19501871 [TBL] [Abstract][Full Text] [Related]
13. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination. Chae SR; Yamamura H; Ikeda K; Watanabe Y Water Res; 2008 Apr; 42(8-9):2029-42. PubMed ID: 18242659 [TBL] [Abstract][Full Text] [Related]
14. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment. Wei CH; Huang X; Ben Aim R; Yamamoto K; Amy G Water Res; 2011 Jan; 45(2):863-71. PubMed ID: 20947121 [TBL] [Abstract][Full Text] [Related]
15. Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process. Lee D; Lee Y; Choi SS; Lee SH; Kim KW; Lee Y Environ Sci Pollut Res Int; 2019 Jan; 26(2):1152-1162. PubMed ID: 28721617 [TBL] [Abstract][Full Text] [Related]
16. Pilot study of a submerged membrane bioreactor for water reclamation. Qin JJ; Oo MH; Tao G; Kekre KA; Hashimoto T Water Sci Technol; 2009; 60(12):3269-74. PubMed ID: 19955652 [TBL] [Abstract][Full Text] [Related]
17. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091 [TBL] [Abstract][Full Text] [Related]
18. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Ma N; Zhang Y; Quan X; Fan X; Zhao H Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a MF membrane system composed of pre coagulation-sedimentation and chlorination for water reuse. Lee SH; Lee BC; Moon SY; Choi YS; Jang NY; Watanabe Y Water Sci Technol; 2006; 54(10):115-21. PubMed ID: 17165454 [TBL] [Abstract][Full Text] [Related]
20. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment. Lee S; Park PK; Kim JH; Yeon KM; Lee CH Water Res; 2008 Jun; 42(12):3109-21. PubMed ID: 18387649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]