These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16855105)

  • 1. On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes.
    Geng JJ; Eger E; Ruff CC; Kristjánsson A; Rotshtein P; Driver J
    J Neurophysiol; 2006 Nov; 96(5):2601-12. PubMed ID: 16855105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentional preparation for a lateralized visual distractor: behavioral and fMRI evidence.
    Ruff CC; Driver J
    J Cogn Neurosci; 2006 Apr; 18(4):522-38. PubMed ID: 16768358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic study of visual extinction. Between- and within-field deficits of attention in hemispatial neglect.
    Vuilleumier PO; Rafal RD
    Brain; 2000 Jun; 123 ( Pt 6)():1263-79. PubMed ID: 10825363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemifield effects of spatial attention in early human visual cortex.
    Kraft A; Kehrer S; Hagendorf H; Brandt SA
    Eur J Neurosci; 2011 Jun; 33(12):2349-58. PubMed ID: 21545658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomic dissociation of selective and suppressive processes in visual attention.
    Belmonte MK; Yurgelun-Todd DA
    Neuroimage; 2003 May; 19(1):180-9. PubMed ID: 12781737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI.
    Ruff CC; Blankenburg F; Bjoertomt O; Bestmann S; Weiskopf N; Driver J
    J Cogn Neurosci; 2009 Jun; 21(6):1146-61. PubMed ID: 18752395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual selection and the human frontal eye fields: effects of frontal transcranial magnetic stimulation on partial report analyzed by Bundesen's theory of visual attention.
    Hung J; Driver J; Walsh V
    J Neurosci; 2011 Nov; 31(44):15904-13. PubMed ID: 22049433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention to one or two features in left or right visual field: a positron emission tomography study.
    Vandenberghe R; Duncan J; Dupont P; Ward R; Poline JB; Bormans G; Michiels J; Mortelmans L; Orban GA
    J Neurosci; 1997 May; 17(10):3739-50. PubMed ID: 9133394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attentional responses to unattended stimuli in human parietal cortex.
    Vandenberghe R; Geeraerts S; Molenberghs P; Lafosse C; Vandenbulcke M; Peeters K; Peeters R; Van Hecke P; Orban GA
    Brain; 2005 Dec; 128(Pt 12):2843-57. PubMed ID: 15857928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence.
    Taylor PC; Muggleton NG; Kalla R; Walsh V; Eimer M
    J Neurophysiol; 2011 Dec; 106(6):3001-9. PubMed ID: 21880940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields.
    Lux S; Marshall JC; Ritzl A; Weiss PH; Pietrzyk U; Shah NJ; Zilles K; Fink GR
    Neuroscience; 2004; 124(1):113-20. PubMed ID: 14960344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple spotlights of attentional selection in human visual cortex.
    McMains SA; Somers DC
    Neuron; 2004 May; 42(4):677-86. PubMed ID: 15157427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.