BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16855235)

  • 1. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis.
    Gardner JG; Grundy FJ; Henkin TM; Escalante-Semerena JC
    J Bacteriol; 2006 Aug; 188(15):5460-8. PubMed ID: 16855235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and N
    VanDrisse CM; Escalante-Semerena JC
    Mol Microbiol; 2018 Feb; 107(4):577-594. PubMed ID: 29266439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants within the C-terminal domain of Streptomyces lividans acetyl-CoA synthetase that block acetylation of its active site lysine in vitro by the protein acetyltransferase (Pat) enzyme.
    Tucker AC; Escalante-Semerena JC
    PLoS One; 2014; 9(6):e99817. PubMed ID: 24918787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetyl-coenzyme A synthetase (AMP forming).
    Starai VJ; Escalante-Semerena JC
    Cell Mol Life Sci; 2004 Aug; 61(16):2020-30. PubMed ID: 15316652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of AcsR in expression of the acetyl-CoA synthetase gene in Vibrio vulnificus.
    Kim MJ; Kim J; Lee HY; Noh HJ; Lee KH; Park SJ
    BMC Microbiol; 2015 Apr; 15():86. PubMed ID: 25887971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans.
    Tucker AC; Escalante-Semerena JC
    Mol Microbiol; 2013 Jan; 87(1):152-67. PubMed ID: 23199287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
    Jin L; Wei W; Jiang Y; Peng H; Cai J; Mao C; Dai H; Choy W; Bemis JE; Jirousek MR; Milne JC; Westphal CH; Perni RB
    J Biol Chem; 2009 Sep; 284(36):24394-405. PubMed ID: 19535340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanism of lysosome transmembrane acetylation by HGSNAT.
    Xu R; Ning Y; Ren F; Gu C; Zhu Z; Pan X; Pshezhetsky AV; Ge J; Yu J
    Nat Struct Mol Biol; 2024 May; ():. PubMed ID: 38769387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.
    Gardner JG; Escalante-Semerena JC
    J Bacteriol; 2009 Mar; 191(6):1749-55. PubMed ID: 19136592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of acetate metabolism in Escherichia coli BL21 by protein N(ε)-lysine acetylation.
    Castaño-Cerezo S; Bernal V; Röhrig T; Termeer S; Cánovas M
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3533-45. PubMed ID: 25524697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli.
    Castaño-Cerezo S; Bernal V; Blanco-Catalá J; Iborra JL; Cánovas M
    Mol Microbiol; 2011 Dec; 82(5):1110-28. PubMed ID: 22059728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acetylproteome of Gram-positive model bacterium Bacillus subtilis.
    Kim D; Yu BJ; Kim JA; Lee YJ; Choi SG; Kang S; Pan JG
    Proteomics; 2013 May; 13(10-11):1726-36. PubMed ID: 23468065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis.
    Grundy FJ; Waters DA; Takova TY; Henkin TM
    Mol Microbiol; 1993 Oct; 10(2):259-71. PubMed ID: 7934817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of N
    Stojowska-Swędrzyńska K; Kuczyńska-Wiśnik D; Laskowska E
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial communities related to the sulfur cycle in the Sansha Yongle Blue Hole.
    Sun K; Yu M; Zhu XY; Xue CX; Zhang Y; Chen X; Yao P; Chen L; Fu L; Yang Z; Zhang XH
    Microbiol Spectr; 2023 Aug; 11(5):e0114923. PubMed ID: 37623326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of plant acetyl-CoA synthetase activity by post-translational lysine acetylation.
    Sofeo N; Winkelman DC; Leung K; Nikolau BJ
    Front Mol Biosci; 2023; 10():1117921. PubMed ID: 37006614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion.
    Fatema N; Fan C
    Mol Microbiol; 2023 May; 119(5):551-559. PubMed ID: 36890576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic acylome reveals metabolite driven modifications in
    Fu JY; Muroski JM; Arbing MA; Salguero JA; Wofford NQ; McInerney MJ; Gunsalus RP; Loo JA; Ogorzalek Loo RR
    Front Microbiol; 2022; 13():1018220. PubMed ID: 36419437
    [No Abstract]   [Full Text] [Related]  

  • 19. Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis.
    Ko EM; Oh Y; Oh JI
    J Microbiol; 2022 Dec; 60(12):1139-1152. PubMed ID: 36279104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Sirtuins Overview: An Open Niche to Explore.
    Gallego-Jara J; Ortega Á; Lozano Terol G; Sola Martínez RA; Cánovas Díaz M; de Diego Puente T
    Front Microbiol; 2021; 12():744416. PubMed ID: 34803965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.