BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16855237)

  • 1. The FAD-dependent tricarballylate dehydrogenase (TcuA) enzyme of Salmonella enterica converts tricarballylate into cis-aconitate.
    Lewis JA; Escalante-Semerena JC
    J Bacteriol; 2006 Aug; 188(15):5479-86. PubMed ID: 16855237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tricarballylate catabolism in Salmonella enterica. The TcuB protein uses 4Fe-4S clusters and heme to transfer electrons from FADH2 in the tricarballylate dehydrogenase (TcuA) enzyme to electron acceptors in the cell membrane.
    Lewis JA; Escalante-Semerena JC
    Biochemistry; 2007 Aug; 46(31):9107-15. PubMed ID: 17630784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Tricarballylate utilization (tcuRABC) genes of Salmonella enterica serovar Typhimurium LT2.
    Lewis JA; Horswill AR; Schwem BE; Escalante-Semerena JC
    J Bacteriol; 2004 Mar; 186(6):1629-37. PubMed ID: 14996793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation.
    Cook GM; Wells JE; Russell JB
    Appl Environ Microbiol; 1994 Jul; 60(7):2533-7. PubMed ID: 8074529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of tricarboxylate transport and metabolism in
    Baugh AC; Defalco JB; Duscent-Maitland CV; Tumen-Velasquez MP; Laniohan NS; Figatner K; Hoover TR; Karls AC; Elliott KT; Neidle EL
    Appl Environ Microbiol; 2024 Feb; 90(2):e0211123. PubMed ID: 38289138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate.
    Horswill AR; Escalante-Semerena JC
    Biochemistry; 2001 Apr; 40(15):4703-13. PubMed ID: 11294638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU.
    Boyd JM; Lewis JA; Escalante-Semerena JC; Downs DM
    J Bacteriol; 2008 Jul; 190(13):4596-602. PubMed ID: 18441067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICROBIOLOGICAL DISSIMILATION OF TRICARBALLYLATE AND TRANS-ACONITATE.
    ALTEKAR WW; RAO MR
    J Bacteriol; 1963 Mar; 85(3):604-13. PubMed ID: 14042938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism.
    Russell JB; Forsberg N
    Br J Nutr; 1986 Jul; 56(1):153-62. PubMed ID: 3676191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica.
    Lewis JA; Boyd JM; Downs DM; Escalante-Semerena JC
    J Bacteriol; 2009 Apr; 191(7):2069-76. PubMed ID: 19136587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of expression of the tricarballylate utilization operon (tcuABC) of Salmonella enterica.
    Lewis JA; Stamper LW; Escalante-Semerena JC
    Res Microbiol; 2009 Apr; 160(3):179-86. PubMed ID: 19284970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterisation of aconitase from Corynebacterium glutamicum.
    Baumgart M; Bott M
    J Biotechnol; 2011 Jul; 154(2-3):163-70. PubMed ID: 20647021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate.
    Boyd JM; Teoh WP; Downs DM
    J Bacteriol; 2012 Feb; 194(3):576-83. PubMed ID: 22101844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression in Escherichia coli of an unnamed protein gene from Aspergillus oryzae RIB40 and cofactor analyses of the gene product as formate oxidase.
    Maeda Y; Doubayashi D; Oki M; Nose H; Sakurai A; Isa K; Fujii Y; Uchida H
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2645-9. PubMed ID: 19966484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH profiles and isotope effects for aconitases from Saccharomycopsis lipolytica, beef heart, and beef liver. alpha-Methyl-cis-aconitate and threo-Ds-alpha-methylisocitrate as substrates.
    Schloss JV; Emptage MH; Cleland WW
    Biochemistry; 1984 Sep; 23(20):4572-80. PubMed ID: 6093859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment and Isolation of Rumen Bacteria That Reduce trans- Aconitic Acid to Tricarballylic Acid.
    Russell JB
    Appl Environ Microbiol; 1985 Jan; 49(1):120-6. PubMed ID: 16346691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.