These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 16855907)

  • 1. Alkaline phosphatase activity in four Microcystis aeruginosa species and their responses to nonylphenol stress.
    Wang J; Liu B; Guo N; Xie P
    Bull Environ Contam Toxicol; 2006 Jun; 76(6):999-1006. PubMed ID: 16855907
    [No Abstract]   [Full Text] [Related]  

  • 2. [Comparison of daily alkaline phosphatase activity of a cyanobacterium (Microcystis aeruginosa) and a diatom (Synedra capitata)].
    Giraudet H; Berthon JL; Buisson B
    C R Acad Sci III; 1997 Jun; 320(6):451-8. PubMed ID: 9247024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM
    Xu Z; Wang S; Wang Y; Zhang J
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7358-7368. PubMed ID: 29275484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols.
    Dziga D; Suda M; Bialczyk J; Czaja-Prokop U; Lechowski Z
    Environ Toxicol; 2007 Aug; 22(4):341-6. PubMed ID: 17607725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of phosphorus sources of different forms on phosphorus metabolism of Microcystis aeruginosa and adhesive Pseudomonas sp].
    Zou D; Xiao L; Yang LY; Wan YQ
    Huan Jing Ke Xue; 2005 May; 26(3):118-21. PubMed ID: 16124482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and effects of octylphenol in a Microcystis aeruginosa culture medium.
    Baptista MS; Stoichev T; Basto MC; Vasconcelos VM; Vasconcelos MT
    Aquat Toxicol; 2009 Apr; 92(2):59-64. PubMed ID: 19152981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Availability of different phosphorus forms in agricultural soil to Microcystis aeruginosa.
    Okubo Y; Inoue T; Yokota K; Ngoc NM
    Water Sci Technol; 2014; 69(6):1205-11. PubMed ID: 24647185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant and metabolism responses to polyphenol stress in cyanobacterium Microcystis aeruginosa.
    Ni LX; Acharya K; Hao XY; Li SY
    J Environ Sci Health B; 2013; 48(2):153-61. PubMed ID: 23305284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation.
    Qiu H; Geng J; Ren H; Xia X; Wang X; Yu Y
    J Hazard Mater; 2013 Mar; 248-249():172-6. PubMed ID: 23357506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry.
    Hadjoudja S; Vignoles C; Deluchat V; Lenain JF; Le Jeune AH; Baudu M
    Aquat Toxicol; 2009 Oct; 94(4):255-64. PubMed ID: 19716610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria.
    Perron MC; Juneau P
    Environ Res; 2011 May; 111(4):520-9. PubMed ID: 21439565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action.
    Shao J; Liu D; Gong D; Zeng Q; Yan Z; Gu JD
    Aquat Toxicol; 2013 Oct; 142-143():257-63. PubMed ID: 24060579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamic studies on the effect of nutrients on the growth of Microcystis aeruginosa].
    Zheng SF; Yang SW; Jin XC
    Huan Jing Ke Xue; 2005 Mar; 26(2):152-6. PubMed ID: 16004319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica).
    Jang MH; Ha K; Takamura N
    Toxicon; 2007 Apr; 49(5):727-33. PubMed ID: 17207510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of phenol on hydrolytic and respiratory enzymes of the small intestinal mucosa of white mouse.
    Ołowska L; Oledzka-Słotwińska H; Laszczyńska M; Woźniak D
    Folia Morphol (Warsz); 1980; 39(2):149-58. PubMed ID: 6262197
    [No Abstract]   [Full Text] [Related]  

  • 18. The combined and second exposure effect of copper (II) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa.
    Lu L; Wu Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2015 Jul; 40(1):140-8. PubMed ID: 26119232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
    Liu Y; Chen S; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Oct; 297():83-91. PubMed ID: 25956638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Li FM
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):527-34. PubMed ID: 18054385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.