These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16856407)

  • 21. Precision synthesis of biodegradable polymers.
    Thomas CM; Lutz JF
    Angew Chem Int Ed Engl; 2011 Sep; 50(40):9244-6. PubMed ID: 21793138
    [No Abstract]   [Full Text] [Related]  

  • 22. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect.
    Jung UW; Song KY; Kim CS; Lee YK; Cho KS; Kim CK; Choi SH
    Biomed Mater; 2007 Sep; 2(3):S101-5. PubMed ID: 18458451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and evaluation of poly (D, L-lactic acid) (PLA) or D, L-lactide/glycolide copolymer (PLGA) microspheres with estradiol.
    Xinteng Z; Weisan P; Ruhua Z; Feng Z
    Pharmazie; 2002 Oct; 57(10):695-7. PubMed ID: 12426951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transplantation of hepatocytes using porous, biodegradable sponges.
    Mooney DJ; Kaufmann PM; Sano K; McNamara KM; Vacanti JP; Langer R
    Transplant Proc; 1994 Dec; 26(6):3425-6. PubMed ID: 7998204
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of an avidin-biotin binding system on chondrocyte adhesion and growth on biodegradable polymers.
    Tsai WB; Wang MC
    Macromol Biosci; 2005 Mar; 5(3):214-21. PubMed ID: 15768440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research progresses on degradation mechanism in vivo and medical applications of polylactic acid].
    Liu JW; Zhao Q; Wan CX
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):308-12. PubMed ID: 11681349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Development of artificial bone made from nacre and polylactic acid and property assessment].
    Liu JB; Chen JT
    Di Yi Jun Yi Da Xue Xue Bao; 2002 Mar; 22(3):236-8. PubMed ID: 12390775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine.
    Fukuhira Y; Kitazono E; Hayashi T; Kaneko H; Tanaka M; Shimomura M; Sumi Y
    Biomaterials; 2006 Mar; 27(9):1797-802. PubMed ID: 16293301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Guest aggregation within poly(L-lactic acid)/pluronic P104 thin films.
    Steves JM; Tan LT; Gardella JA; Hard R; Hicks WL; Cartwright AN; Koc B; Bright FV
    Appl Spectrosc; 2008 Mar; 62(3):290-4. PubMed ID: 18339236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene.
    Shan D; Huang Z; Zhao Y; Cai Q; Yang X
    Biomed Mater; 2014 Nov; 9(6):061001. PubMed ID: 25426734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New technique to extend the useful life of a biodegradable cartilage implant.
    Spain TL; Agrawal CM; Athanasiou KA
    Tissue Eng; 1998; 4(4):343-52. PubMed ID: 9916167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Guided tissue regeneration. Absorbable barriers.
    Wang HL; MacNeil RL
    Dent Clin North Am; 1998 Jul; 42(3):505-22. PubMed ID: 9700452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.
    Courant T; Roullin VG; Cadiou C; Delavoie F; Molinari M; Andry MC; Gafa V; Chuburu F
    Nanotechnology; 2010 Apr; 21(16):165101. PubMed ID: 20348590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.