BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16856567)

  • 1. [Regulation of phototransduction in rod cells by selective farnesylation of G-protein transducin: farnesyl as a molecular post-it].
    Kassai H; Fukada Y
    Seikagaku; 2006 Jun; 78(6):533-7. PubMed ID: 16856567
    [No Abstract]   [Full Text] [Related]  

  • 2. Farnesylation of retinal transducin underlies its translocation during light adaptation.
    Kassai H; Aiba A; Nakao K; Nakamura K; Katsuki M; Xiong WH; Yau KW; Imai H; Shichida Y; Satomi Y; Takao T; Okano T; Fukada Y
    Neuron; 2005 Aug; 47(4):529-39. PubMed ID: 16102536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular mechanisms of how we see].
    Tachibanaki S; Kawamura S
    Tanpakushitsu Kakusan Koso; 2005 Dec; 50(15):1979-87. PubMed ID: 16363648
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade.
    Sagoo MS; Lagnado L
    Nature; 1997 Sep; 389(6649):392-5. PubMed ID: 9311782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein betagamma-complex is crucial for efficient signal amplification in vision.
    Kolesnikov AV; Rikimaru L; Hennig AK; Lukasiewicz PD; Fliesler SJ; Govardovskii VI; Kefalov VJ; Kisselev OG
    J Neurosci; 2011 Jun; 31(22):8067-77. PubMed ID: 21632928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNTF negatively regulates the phototransduction machinery in rod photoreceptors: implication for light-induced photostasis plasticity.
    Wen R; Song Y; Liu Y; Li Y; Zhao L; Laties AM
    Adv Exp Med Biol; 2008; 613():407-13. PubMed ID: 18188971
    [No Abstract]   [Full Text] [Related]  

  • 8. Speed, spatial, and temporal tuning of rod and cone vision in mouse.
    Umino Y; Solessio E; Barlow RB
    J Neurosci; 2008 Jan; 28(1):189-98. PubMed ID: 18171936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G proteins and phototransduction.
    Arshavsky VY; Lamb TD; Pugh EN
    Annu Rev Physiol; 2002; 64():153-87. PubMed ID: 11826267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vertebrate phototransduction cascade: amplification and termination mechanisms.
    Chen CK
    Rev Physiol Biochem Pharmacol; 2005; 154():101-21. PubMed ID: 16634148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calculus of rod phototransduction.
    Tranchina D
    J Gen Physiol; 1998 Jan; 111(1):3-6. PubMed ID: 9417131
    [No Abstract]   [Full Text] [Related]  

  • 13. Evolution of the vertebrate phototransduction cascade activation steps.
    Lamb TD; Hunt DM
    Dev Biol; 2017 Nov; 431(1):77-92. PubMed ID: 28347645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototransduction in mouse rods and cones.
    Fu Y; Yau KW
    Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototransduction and the evolution of photoreceptors.
    Fain GL; Hardie R; Laughlin SB
    Curr Biol; 2010 Feb; 20(3):R114-24. PubMed ID: 20144772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins.
    Rosenzweig DH; Nair KS; Wei J; Wang Q; Garwin G; Saari JC; Chen CK; Smrcka AV; Swaroop A; Lem J; Hurley JB; Slepak VZ
    J Neurosci; 2007 May; 27(20):5484-94. PubMed ID: 17507570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation.
    Krispel CM; Sokolov M; Chen YM; Song H; Herrmann R; Arshavsky VY; Burns ME
    J Gen Physiol; 2007 Sep; 130(3):303-12. PubMed ID: 17724163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in single photon responses: a cut in the Gordian knot of rod phototransduction?
    Pugh EN
    Neuron; 1999 Jun; 23(2):205-8. PubMed ID: 10399927
    [No Abstract]   [Full Text] [Related]  

  • 20. Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors.
    Brooks C; Murphy J; Belcastro M; Heller D; Kolandaivelu S; Kisselev O; Sokolov M
    Front Mol Neurosci; 2018; 11():16. PubMed ID: 29410614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.