These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16856859)

  • 1. Analysis of a cross between green and red fluorescent trypanosomes.
    Gibson W; Peacock L; Ferris V; Williams K; Bailey M
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):557-9. PubMed ID: 16856859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei.
    Gibson W; Peacock L; Ferris V; Williams K; Bailey M
    Parasit Vectors; 2008 Feb; 1(1):4. PubMed ID: 18298832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental genetic crosses in tsetse flies of the livestock pathogen Trypanosoma congolense savannah.
    Peacock L; Kay C; Bailey M; Gibson W
    Parasit Vectors; 2024 Jan; 17(1):4. PubMed ID: 38178172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers.
    Peacock L; Ferris V; Bailey M; Gibson W
    Kinetoplastid Biol Dis; 2007 Jun; 6():4. PubMed ID: 17553128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei.
    Peacock L; Ferris V; Bailey M; Gibson W
    Parasit Vectors; 2009 Sep; 2(1):43. PubMed ID: 19772562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic exchange in trypanosomes.
    Gibson W
    Bull Mem Acad R Med Belg; 1996; 151(2):203-10. PubMed ID: 8989895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mating compatibility in the parasitic protist Trypanosoma brucei.
    Peacock L; Ferris V; Bailey M; Gibson W
    Parasit Vectors; 2014 Feb; 7():78. PubMed ID: 24559099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events.
    Bingle LE; Eastlake JL; Bailey M; Gibson WC
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3231-40. PubMed ID: 11739755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of Trypanosoma brucei within the tsetse fly midgut observed using green fluorescent trypanosomes.
    Gibson W; Bailey M
    Kinetoplastid Biol Dis; 2003 Apr; 2(1):1. PubMed ID: 12769824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma brucei 29-13 strain is inducible in but not permissive for the tsetse fly vector.
    Herder S; Votýpka J; Jirků M; Rádrová J; Janzen CJ; Lukes J
    Exp Parasitol; 2007 Sep; 117(1):111-4. PubMed ID: 17603043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection.
    Kubi C; van den Abbeele J; DE Deken R; Marcotty T; Dorny P; van den Bossche P
    Med Vet Entomol; 2006 Dec; 20(4):388-92. PubMed ID: 17199750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field isolates.
    Ravel S; Patrel D; Koffi M; Jamonneau V; Cuny G
    Acta Trop; 2006 Nov; 100(1-2):151-5. PubMed ID: 17069743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A successful backcross in Trypanosoma brucei.
    Gibson W; Kanmogne G; Bailey M
    Mol Biochem Parasitol; 1995 Jan; 69(1):101-110. PubMed ID: 7723777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions.
    Peacock L; Ferris V; Bailey M; Gibson W
    Parasitology; 2006 May; 132(Pt 5):651-8. PubMed ID: 16393366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential production of gametes during meiosis in trypanosomes.
    Peacock L; Kay C; Farren C; Bailey M; Carrington M; Gibson W
    Commun Biol; 2021 May; 4(1):555. PubMed ID: 33976359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances using green and red fluorescent protein variants.
    Müller-Taubenberger A; Anderson KI
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of genetic exchange in the study of protozoan infections.
    Walliker D
    Parasitology; 1989; 99 Suppl():S49-58. PubMed ID: 2573031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny of snake trypanosomes inferred by SSU rDNA sequences, their possible transmission by phlebotomines, and taxonomic appraisal by molecular, cross-infection and morphological analysis.
    Viola LB; Campaner M; Takata CS; Ferreira RC; Rodrigues AC; Freitas RA; Duarte MR; Grego KF; Barrett TV; Camargo EP; Teixeira MM
    Parasitology; 2008 Apr; 135(5):595-605. PubMed ID: 18371240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in sub-Saharan Africa.
    Kato H; Jochim RC; Lawyer PG; Valenzuela JG
    J Exp Biol; 2007 Mar; 210(Pt 5):733-40. PubMed ID: 17297134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius.
    Geiger A; Ravel S; Mateille T; Janelle J; Patrel D; Cuny G; Frutos R
    Mol Biol Evol; 2007 Jan; 24(1):102-9. PubMed ID: 17012373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.