These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16857163)

  • 1. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes.
    Dennison SR; Howe J; Morton LH; Brandenburg K; Harris F; Phoenix DA
    Biochem Biophys Res Commun; 2006 Sep; 347(4):1006-10. PubMed ID: 16857163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial properties of a lipid interactive alpha-helical peptide VP1 against Staphylococcus aureus bacteria.
    Dennison SR; Morton LH; Harris F; Phoenix DA
    Biophys Chem; 2007 Sep; 129(2-3):279-83. PubMed ID: 17640795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into the ability of an oblique alpha-helical template to provide the basis for design of an antimicrobial anionic amphiphilic peptide.
    Dennison SR; Morton LH; Brandenburg K; Harris F; Phoenix DA
    FEBS J; 2006 Aug; 273(16):3792-803. PubMed ID: 16911526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of membrane lipid composition on antimicrobial function of an alpha-helical peptide.
    Dennison SR; Morton LH; Harris F; Phoenix DA
    Chem Phys Lipids; 2008 Feb; 151(2):92-102. PubMed ID: 18060874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.
    Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM
    J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interactions of aurein 1.2 with cancer cell membranes.
    Dennison SR; Harris F; Phoenix DA
    Biophys Chem; 2007 Apr; 127(1-2):78-83. PubMed ID: 17222498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids.
    Epand RF; Schmitt MA; Gellman SH; Sen A; Auger M; Hughes DW; Epand RM
    Mol Membr Biol; 2005; 22(6):457-69. PubMed ID: 16373318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the antimicrobial peptide melimine with bacterial membranes.
    Rasul R; Cole N; Balasubramanian D; Chen R; Kumar N; Willcox MD
    Int J Antimicrob Agents; 2010 Jun; 35(6):566-72. PubMed ID: 20227248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes.
    Ausili A; Torrecillas A; Martínez-Senac MM; Corbalán-García S; Gómez-Fernández JC
    J Struct Biol; 2008 Oct; 164(1):146-52. PubMed ID: 18672068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceragenins: cholic acid-based mimics of antimicrobial peptides.
    Lai XZ; Feng Y; Pollard J; Chin JN; Rybak MJ; Bucki R; Epand RF; Epand RM; Savage PB
    Acc Chem Res; 2008 Oct; 41(10):1233-40. PubMed ID: 18616297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1.
    Zhu WL; Hahm KS; Shin SY
    J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the interactions of Aurein 2.5 with bacterial membranes.
    Dennison SR; Morton LH; Shorrocks AJ; Harris F; Phoenix DA
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):225-30. PubMed ID: 19056250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin.
    Won A; Pripotnev S; Ruscito A; Ianoul A
    J Phys Chem B; 2011 Mar; 115(10):2371-9. PubMed ID: 21338137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents.
    Mosca S; Keller J; Azzouz N; Wagner S; Titz A; Seeberger PH; Brezesinski G; Hartmann L
    Biomacromolecules; 2014 May; 15(5):1687-95. PubMed ID: 24694059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.
    Dennison SR; Mura M; Harris F; Morton LH; Zvelindovsky A; Phoenix DA
    Biochim Biophys Acta; 2015 May; 1848(5):1111-8. PubMed ID: 25640709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.