These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16857291)

  • 1. An integrative software package for gastrointestinal biomagnetic data acquisition and analysis using SQUID magnetometers.
    Irimia A; Cheng LK; Buist ML; Pullan AJ; Bradshaw LA
    Comput Methods Programs Biomed; 2006 Aug; 83(2):83-94. PubMed ID: 16857291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MaZda--a software package for image texture analysis.
    Szczypiński PM; Strzelecki M; Materka A; Klepaczko A
    Comput Methods Programs Biomed; 2009 Apr; 94(1):66-76. PubMed ID: 18922598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetogastrographic detection of gastric electrical response activity in humans.
    Irimia A; Richards WO; Bradshaw LA
    Phys Med Biol; 2006 Mar; 51(5):1347-60. PubMed ID: 16481699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable EGG recording system based on a digital voice recorder.
    Jang JK; Shieh MJ; Kuo TS; Jaw FS
    J Med Eng Technol; 2009; 33(3):209-13. PubMed ID: 19340691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube superconducting quantum interference device.
    Cleuziou JP; Wernsdorfer W; Bouchiat V; Ondarçuhu T; Monthioux M
    Nat Nanotechnol; 2006 Oct; 1(1):53-9. PubMed ID: 18654142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomagnetic detection of gastric electrical activity in normal and vagotomized rabbits.
    Bradshaw LA; Myers AG; Redmond A; Wikswo JP; Richards WO
    Neurogastroenterol Motil; 2003 Oct; 15(5):475-82. PubMed ID: 14507349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of multiple sources using a SQUID vector magnetometer.
    Burghoff M; Schnabel A; Drung D; Thiel F; Knappe-Grüneberg S; Hartwig S; Kosch O; Trahms L; Koch H
    Neurol Clin Neurophysiol; 2004 Nov; 2004():67. PubMed ID: 16012672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A visualization and segmentation toolbox for electron microscopy.
    Pruggnaller S; Mayr M; Frangakis AS
    J Struct Biol; 2008 Oct; 164(1):161-5. PubMed ID: 18691905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine.
    Richards WO; Bradshaw LA; Staton DJ; Garrard CL; Liu F; Buchanan S; Wikswo JP
    Dig Dis Sci; 1996 Dec; 41(12):2293-301. PubMed ID: 9011432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HTS magnetometers for fetal magnetocardiography.
    Li Z; Wakai RT; Paulson DN; Schwartz B
    Neurol Clin Neurophysiol; 2004 Nov; 2004():25. PubMed ID: 16012655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human MCG measurements with a high-sensitivity potassium atomic magnetometer.
    Kamada K; Ito Y; Kobayashi T
    Physiol Meas; 2012 Jun; 33(6):1063-71. PubMed ID: 22621881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels.
    Unterhinninghofen R; Ley S; Ley-Zaporozhan J; von Tengg-Kobligk H; Bock M; Kauczor HU; Szabó G; Dillmann R
    Acad Radiol; 2008 Mar; 15(3):361-9. PubMed ID: 18280934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051920. PubMed ID: 15244860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields.
    Buist ML; Cheng LK; Yassi R; Bradshaw LA; Richards WO; Pullan AJ
    Physiol Meas; 2004 Aug; 25(4):849-61. PubMed ID: 15382826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive biomagnetic detection of intestinal slow wave dysrhythmias in chronic mesenteric ischemia.
    Somarajan S; Muszynski ND; Cheng LK; Bradshaw LA; Naslund TC; Richards WO
    Am J Physiol Gastrointest Liver Physiol; 2015 Jul; 309(1):G52-8. PubMed ID: 25930082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Software tools for analysis of mass spectrometric lipidome data.
    Haimi P; Uphoff A; Hermansson M; Somerharju P
    Anal Chem; 2006 Dec; 78(24):8324-31. PubMed ID: 17165823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative analysis platform for multiple neural spike train data.
    Huang Y; Li X; Li Y; Xu Q; Lu Q; Liu Q
    J Neurosci Methods; 2008 Jul; 172(2):303-11. PubMed ID: 18538855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.