BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 16857713)

  • 1. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential.
    Wangemann P
    J Physiol; 2006 Oct; 576(Pt 1):11-21. PubMed ID: 16857713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap junctions and cochlear homeostasis.
    Zhao HB; Kikuchi T; Ngezahayo A; White TW
    J Membr Biol; 2006; 209(2-3):177-86. PubMed ID: 16773501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junctions and connexin expression in the inner ear.
    Forge A; Becker D; Casalotti S; Edwards J; Evans WH; Lench N; Souter M
    Novartis Found Symp; 1999; 219():134-50; discussion 151-6. PubMed ID: 10207902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing.
    Chang Q; Tang W; Kim Y; Lin X
    Neurobiol Dis; 2015 Jan; 73():418-27. PubMed ID: 25251605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss.
    Locher H; de Groot JC; van Iperen L; Huisman MA; Frijns JH; Chuva de Sousa Lopes SM
    Dev Neurobiol; 2015 Nov; 75(11):1219-40. PubMed ID: 25663387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall.
    Mei L; Chen J; Zong L; Zhu Y; Liang C; Jones RO; Zhao HB
    Neurobiol Dis; 2017 Dec; 108():195-203. PubMed ID: 28823936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness.
    Kidokoro Y; Karasawa K; Minowa O; Sugitani Y; Noda T; Ikeda K; Kamiya K
    PLoS One; 2014; 9(9):e108216. PubMed ID: 25259580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders.
    Chen J; Chen J; Zhu Y; Liang C; Zhao HB
    Biochem Biophys Res Commun; 2014 May; 448(1):28-32. PubMed ID: 24732355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enigmatic root cell - emerging roles contributing to fluid homeostasis within the cochlear outer sulcus.
    Jagger DJ; Forge A
    Hear Res; 2013 Sep; 303():1-11. PubMed ID: 23151402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connexin hemichannels and cochlear function.
    Verselis VK
    Neurosci Lett; 2019 Mar; 695():40-45. PubMed ID: 28917982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism.
    Mistrík P; Ashmore JF
    J Assoc Res Otolaryngol; 2010 Dec; 11(4):559-71. PubMed ID: 20635191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap junction systems in the mammalian cochlea.
    Kikuchi T; Kimura RS; Paul DL; Takasaka T; Adams JC
    Brain Res Brain Res Rev; 2000 Apr; 32(1):163-6. PubMed ID: 10751665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ cycling and the endocochlear potential.
    Wangemann P
    Hear Res; 2002 Mar; 165(1-2):1-9. PubMed ID: 12031509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of potassium recirculation in cochlear amplification.
    Mistrik P; Ashmore J
    Curr Opin Otolaryngol Head Neck Surg; 2009 Oct; 17(5):394-9. PubMed ID: 19741536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs.
    Lee MY; Takada T; Takada Y; Kappy MD; Beyer LA; Swiderski DL; Godin AL; Brewer S; King WM; Raphael Y
    Hear Res; 2015 Oct; 328():102-12. PubMed ID: 26232528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of hearing by simultaneous mutation of Na,K-ATPase and NKCC1.
    Diaz RC; Vazquez AE; Dou H; Wei D; Cardell EL; Lingrel J; Shull GE; Doyle KJ; Yamoah EN
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):422-34. PubMed ID: 17674100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions.
    Qu Y; Tang W; Zhou B; Ahmad S; Chang Q; Li X; Lin X
    Biochem Biophys Res Commun; 2012 Jan; 417(1):245-50. PubMed ID: 22142852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexins and gap junctions in the inner ear--it's not just about K⁺ recycling.
    Jagger DJ; Forge A
    Cell Tissue Res; 2015 Jun; 360(3):633-44. PubMed ID: 25381570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance.
    Nin F; Yoshida T; Sawamura S; Ogata G; Ota T; Higuchi T; Murakami S; Doi K; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Oct; 468(10):1637-49. PubMed ID: 27568193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness.
    Nickel R; Forge A
    Curr Opin Otolaryngol Head Neck Surg; 2008 Oct; 16(5):452-7. PubMed ID: 18797288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.