These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 16858389)

  • 1. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?
    Harel NY; Strittmatter SM
    Nat Rev Neurosci; 2006 Aug; 7(8):603-16. PubMed ID: 16858389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive changes in the injured spinal cord and their role in promoting functional recovery.
    Fouad K; Tse A
    Neurol Res; 2008 Feb; 30(1):17-27. PubMed ID: 18387259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development.
    Kaplan A; Bueno M; Hua L; Fournier AE
    Dev Dyn; 2018 Jan; 247(1):18-23. PubMed ID: 28643358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury.
    Filous AR; Schwab JM
    Am J Pathol; 2018 Jan; 188(1):53-62. PubMed ID: 29030051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to promote regeneration and recovery in the injured spinal cord.
    Kliot M; Lustgarten JH
    Neurosurg Clin N Am; 1990 Jul; 1(3):751-9. PubMed ID: 2136167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from spinal cord injury: regeneration, plasticity and rehabilitation.
    Fawcett JW
    Brain; 2009 Jun; 132(Pt 6):1417-8. PubMed ID: 19429905
    [No Abstract]   [Full Text] [Related]  

  • 10. [Strategies to repair lost sensory connections to the spinal cord].
    Kozlova EN
    Mol Biol (Mosk); 2008; 42(5):820-9. PubMed ID: 18988531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
    Joshi Y; Sória MG; Quadrato G; Inak G; Zhou L; Hervera A; Rathore KI; Elnaggar M; Cucchiarini M; Marine JC; Puttagunta R; Di Giovanni S
    Brain; 2015 Jul; 138(Pt 7):1843-62. PubMed ID: 25981963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury.
    Quraishe S; Forbes LH; Andrews MR
    Neural Plast; 2018; 2018():2952386. PubMed ID: 29849554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury.
    Van Steenbergen V; Bareyre FM
    Exp Neurol; 2021 Nov; 345():113839. PubMed ID: 34389362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW; Chakrabarty S; Haque R; Martin JH
    J Comp Neurol; 2008 Feb; 506(5):838-50. PubMed ID: 18076081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial inhibition of CNS axon regeneration.
    Yiu G; He Z
    Nat Rev Neurosci; 2006 Aug; 7(8):617-27. PubMed ID: 16858390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodelling of spared proprioceptive circuit involving a small number of neurons supports functional recovery.
    Hollis ER; Ishiko N; Pessian M; Tolentino K; Lee-Kubli CA; Calcutt NA; Zou Y
    Nat Commun; 2015 Jan; 6():6079. PubMed ID: 25597627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation.
    Vajn K; Plunkett JA; Tapanes-Castillo A; Oudega M
    Neurosci Bull; 2013 Aug; 29(4):402-10. PubMed ID: 23893428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.