BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16858397)

  • 1. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus.
    Linder B; Mentele E; Mansperger K; Straub T; Kremmer E; Rupp RA
    Genes Dev; 2007 Apr; 21(8):973-83. PubMed ID: 17438000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis.
    Chung HG; Chung HM
    Mol Cells; 1999 Oct; 9(5):497-503. PubMed ID: 10597038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin accessibility and histone acetylation in the regulation of competence in early development.
    Esmaeili M; Blythe SA; Tobias JW; Zhang K; Yang J; Klein PS
    Dev Biol; 2020 Jun; 462(1):20-35. PubMed ID: 32119833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro.
    Furue M; Myoishi Y; Fukui Y; Ariizumi T; Okamoto T; Asashima M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15474-9. PubMed ID: 12424341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning.
    Reis AH; Sokol SY
    Development; 2020 May; 147(10):. PubMed ID: 32366679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins.
    Latinkić BV; Umbhauer M; Neal KA; Lerchner W; Smith JC; Cunliffe V
    Genes Dev; 1997 Dec; 11(23):3265-76. PubMed ID: 9389657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
    Marchak A; Grant PA; Neilson KM; Datta Majumdar H; Yaklichkin S; Johnson D; Moody SA
    Dev Biol; 2017 Sep; 429(1):213-224. PubMed ID: 28663133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New perspectives on the role of the fibroblast growth factor family in amphibian development.
    Isaacs HV
    Cell Mol Life Sci; 1997 Apr; 53(4):350-61. PubMed ID: 9137626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dlx proteins position the neural plate border and determine adjacent cell fates.
    Woda JM; Pastagia J; Mercola M; Artinger KB
    Development; 2003 Jan; 130(2):331-42. PubMed ID: 12466200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning.
    Nutt SL; Dingwell KS; Holt CE; Amaya E
    Genes Dev; 2001 May; 15(9):1152-66. PubMed ID: 11331610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e.
    Cha SW; McAdams M; Kormish J; Wylie C; Kofron M
    PLoS One; 2012; 7(7):e41782. PubMed ID: 22848601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural size variation among embryos leads to the corresponding scaling in gene expression.
    Leibovich A; Edri T; Klein SL; Moody SA; Fainsod A
    Dev Biol; 2020 Jun; 462(2):165-179. PubMed ID: 32259520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desynchronizing Embryonic Cell Division Waves Reveals the Robustness of Xenopus laevis Development.
    Anderson GA; Gelens L; Baker JC; Ferrell JE
    Cell Rep; 2017 Oct; 21(1):37-46. PubMed ID: 28978482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventx1.1 as a Direct Repressor of Early Neural Gene
    Umair Z; Kumar S; Kim DH; Rafiq K; Kumar V; Kim S; Park JB; Lee JY; Lee U; Kim J
    Mol Cells; 2018 Dec; 41(12):1061-1071. PubMed ID: 30590909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos.
    Yoon J; Kim JH; Kim SC; Park JB; Lee JY; Kim J
    Mol Cells; 2014 Mar; 37(3):220-5. PubMed ID: 24608799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development.
    Kumar S; Umair Z; Kumar V; Goutam RS; Park S; Lee U; Kim J
    Sci Rep; 2024 Apr; 14(1):8922. PubMed ID: 38637565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1.
    Nentwich O; Dingwell KS; Nordheim A; Smith JC
    Dev Biol; 2009 Dec; 336(2):313-26. PubMed ID: 19799892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway.
    Kim HY; Davidson LA
    J Cell Sci; 2011 Feb; 124(Pt 4):635-46. PubMed ID: 21266466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression analysis of the Tao kinase family of Ste20p-like map kinase kinase kinases during early embryonic development in Xenopus laevis.
    Yoder MD; Van Osten S; Weber GF
    Gene Expr Patterns; 2023 Jun; 48():119318. PubMed ID: 37011704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.