These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 16858397)
1. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. Snir M; Ofir R; Elias S; Frank D EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397 [TBL] [Abstract][Full Text] [Related]
2. A POU protein regulates mesodermal competence to FGF in Xenopus. Henig C; Elias S; Frank D Mech Dev; 1998 Feb; 71(1-2):131-42. PubMed ID: 9507090 [TBL] [Abstract][Full Text] [Related]
3. Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Gutkovich YE; Ofir R; Elkouby YM; Dibner C; Gefen A; Elias S; Frank D Dev Biol; 2010 Feb; 338(1):50-62. PubMed ID: 19944089 [TBL] [Abstract][Full Text] [Related]
4. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Sheng G; dos Reis M; Stern CD Cell; 2003 Nov; 115(5):603-13. PubMed ID: 14651851 [TBL] [Abstract][Full Text] [Related]
5. CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus. Linder B; Mentele E; Mansperger K; Straub T; Kremmer E; Rupp RA Genes Dev; 2007 Apr; 21(8):973-83. PubMed ID: 17438000 [TBL] [Abstract][Full Text] [Related]
7. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Ribisi S; Mariani FV; Aamar E; Lamb TM; Frank D; Harland RM Dev Biol; 2000 Nov; 227(1):183-96. PubMed ID: 11076686 [TBL] [Abstract][Full Text] [Related]
8. Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Tada M; Casey ES; Fairclough L; Smith JC Development; 1998 Oct; 125(20):3997-4006. PubMed ID: 9735361 [TBL] [Abstract][Full Text] [Related]
9. XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos. Cao Y; Knöchel S; Oswald F; Donow C; Zhao H; Knöchel W Mech Dev; 2006 Jan; 123(1):84-96. PubMed ID: 16278078 [TBL] [Abstract][Full Text] [Related]
10. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Zohn IE; Brivanlou AH Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023 [TBL] [Abstract][Full Text] [Related]
11. Xrel3/XrelA attenuates β-catenin-mediated transcription during mesoderm formation in Xenopus embryos. Kennedy MW; Kao KR Biochem J; 2011 Apr; 435(1):247-57. PubMed ID: 21214516 [TBL] [Abstract][Full Text] [Related]
13. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning. Curran KL; Grainger RM Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625 [TBL] [Abstract][Full Text] [Related]
14. Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. Daniels M; Shimizu K; Zorn AM; Ohnuma S Development; 2004 Nov; 131(22):5613-26. PubMed ID: 15496439 [TBL] [Abstract][Full Text] [Related]
15. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction. Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579 [TBL] [Abstract][Full Text] [Related]
16. FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue. Polevoy H; Malyarova A; Fonar Y; Elias S; Frank D Int J Dev Biol; 2017; 61(3-4-5):293-302. PubMed ID: 28621426 [TBL] [Abstract][Full Text] [Related]
17. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Pieper M; Ahrens K; Rink E; Peter A; Schlosser G Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Chalmers AD; Welchman D; Papalopulu N Dev Cell; 2002 Feb; 2(2):171-82. PubMed ID: 11832243 [TBL] [Abstract][Full Text] [Related]
19. Xbra3 induces mesoderm and neural tissue in Xenopus laevis. Strong CF; Barnett MW; Hartman D; Jones EA; Stott D Dev Biol; 2000 Jun; 222(2):405-19. PubMed ID: 10837128 [TBL] [Abstract][Full Text] [Related]
20. XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Nitta KR; Tanegashima K; Takahashi S; Asashima M Dev Biol; 2004 Nov; 275(1):258-67. PubMed ID: 15464588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]