These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 16858553)
1. Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. Puthoff DP; Smigocki AC Plant Cell Rep; 2007 Jan; 26(1):71-84. PubMed ID: 16858553 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host. Li H; Smigocki AC Insect Sci; 2018 Apr; 25(2):222-234. PubMed ID: 27696738 [TBL] [Abstract][Full Text] [Related]
3. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection. Samuelian S; Kleine M; Ruyter-Spira CP; Klein-Lankhorst RM; Jung C Plant Mol Biol; 2004 Jan; 54(1):147-56. PubMed ID: 15159641 [TBL] [Abstract][Full Text] [Related]
4. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode. Ghaemi R; Pourjam E; Safaie N; Verstraeten B; Mahmoudi SB; Mehrabi R; De Meyer T; Kyndt T BMC Plant Biol; 2020 Oct; 20(1):483. PubMed ID: 33092522 [TBL] [Abstract][Full Text] [Related]
5. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Thurau T; Kifle S; Jung C; Cai D Plant Mol Biol; 2003 Jun; 52(3):643-60. PubMed ID: 12956533 [TBL] [Abstract][Full Text] [Related]
6. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Cai D; Thurau T; Tian Y; Lange T; Yeh KW; Jung C Plant Mol Biol; 2003 Apr; 51(6):839-49. PubMed ID: 12777044 [TBL] [Abstract][Full Text] [Related]
8. Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap-root. Turesson H; Andersson M; Marttila S; Thulin I; Hofvander P BMC Plant Biol; 2014 Apr; 14():104. PubMed ID: 24758347 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs Participate in Morphological Acclimation of Sugar Beet Roots to Nitrogen Deficiency. Liu X; Lu Z; Yao Q; Xu L; Fu J; Yin X; Bai Q; Liu D; Xing W Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201712 [TBL] [Abstract][Full Text] [Related]
10. Functional differentiation of the sugar beet root system as indicator of developmental phase change. Trebbi D; McGrath JM Physiol Plant; 2009 Jan; 135(1):84-97. PubMed ID: 19121102 [TBL] [Abstract][Full Text] [Related]
11. Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Holmquist L; Dölfors F; Fogelqvist J; Cohn J; Kraft T; Dixelius C Mol Genet Genomics; 2021 Jan; 296(1):155-164. PubMed ID: 33118051 [TBL] [Abstract][Full Text] [Related]
12. Transcript profiles in sugar beet genotypes uncover timing and strength of defense reactions to Cercospora beticola infection. Weltmeier F; Mäser A; Menze A; Hennig S; Schad M; Breuer F; Schulz B; Holtschulte B; Nehls R; Stahl DJ Mol Plant Microbe Interact; 2011 Jul; 24(7):758-72. PubMed ID: 21385013 [TBL] [Abstract][Full Text] [Related]
13. Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose-dependent manner. Abts W; Van de Poel B; Vandenbussche B; De Proft MP Planta; 2014 Oct; 240(4):679-86. PubMed ID: 25034827 [TBL] [Abstract][Full Text] [Related]
15. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet. Oltmanns H; Kloos DU; Briess W; Pflugmacher M; Stahl DJ; Hehl R Planta; 2006 Aug; 224(3):485-95. PubMed ID: 16482437 [TBL] [Abstract][Full Text] [Related]
16. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. Bellin D; Schulz B; Soerensen TR; Salamini F; Schneider K J Exp Bot; 2007; 58(3):699-715. PubMed ID: 17307746 [TBL] [Abstract][Full Text] [Related]
17. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Lv X; Jin Y; Wang Y Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503 [TBL] [Abstract][Full Text] [Related]
18. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet ( Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064 [TBL] [Abstract][Full Text] [Related]
19. Early transcriptional changes in Beta vulgaris in response to low temperature. Moliterni VM; Paris R; Onofri C; Orrù L; Cattivelli L; Pacifico D; Avanzato C; Ferrarini A; Delledonne M; Mandolino G Planta; 2015 Jul; 242(1):187-201. PubMed ID: 25893871 [TBL] [Abstract][Full Text] [Related]
20. Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.). Rotthues A; Kappler J; Lichtfuss A; Kloos DU; Stahl DJ; Hehl R Planta; 2008 May; 227(6):1321-32. PubMed ID: 18324413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]