These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 1685934)
1. Neurotensin and neurotensin analogues modify the effects of chronic neuroleptic administration in the rat. Stoessl AJ; Szczutkowski E Brain Res; 1991 Sep; 558(2):289-95. PubMed ID: 1685934 [TBL] [Abstract][Full Text] [Related]
2. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. McCormick SE; Stoessl AJ Neuroscience; 2003; 119(2):547-55. PubMed ID: 12770567 [TBL] [Abstract][Full Text] [Related]
3. Effects of neurotensin in a rodent model of tardive dyskinesia. Stoessl AJ Neuropharmacology; 1995 Apr; 34(4):457-62. PubMed ID: 7566478 [TBL] [Abstract][Full Text] [Related]
4. Effects of ethanol in a putative rodent model of tardive dyskinesia. Stoessl AJ Pharmacol Biochem Behav; 1996 Jul; 54(3):541-6. PubMed ID: 8743627 [TBL] [Abstract][Full Text] [Related]
5. Effects of subthalamic nucleus lesions in a putative model of tardive dyskinesia in the rat. Stoessl AJ; Rajakumar N Synapse; 1996 Nov; 24(3):256-61. PubMed ID: 8923666 [TBL] [Abstract][Full Text] [Related]
6. In vivo neurochemical and behavioural effects of intracerebrally administered neurotensin and D-Trp11-neurotensin on mesolimbic and nigrostriatal dopaminergic function in the rat. Ford AP; Marsden CA Brain Res; 1990 Nov; 534(1-2):243-50. PubMed ID: 2073584 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol Protects Against Vacuous Chewing Movements Induced by Chronic Treatment with Fluphenazine. Busanello A; Leal CQ; Peroza LR; Röpke J; de Moraes Reis E; de Freitas CM; Libardoni M; de Vargas Barbosa NB; Fachinetto R Neurochem Res; 2017 Nov; 42(11):3033-3040. PubMed ID: 28744755 [TBL] [Abstract][Full Text] [Related]
8. Effects of chronic infusion of neurotensin and a neurotensin NT1 selective analogue PD149163 on amphetamine-induced hyperlocomotion. Norman C; Beckett SR; Spicer CH; Ashton D; Langlois X; Bennett GW J Psychopharmacol; 2008 May; 22(3):300-7. PubMed ID: 18208905 [TBL] [Abstract][Full Text] [Related]
9. Neuroleptic-induced oral dyskinesias: effects of progabide and lack of correlation with regional changes in glutamic acid decarboxylase and choline acetyltransferase activities. Mithani S; Atmadja S; Baimbridge KG; Fibiger HC Psychopharmacology (Berl); 1987; 93(1):94-100. PubMed ID: 2888156 [TBL] [Abstract][Full Text] [Related]
10. Centrally administered [D-Trp11]neurotensin, as well as neurotensin protected from inactivation by thiorphan, modifies locomotion in rats in a biphasic manner. Nouel D; Dubuc I; Kitabgi P; Costentin J Peptides; 1990; 11(3):551-5. PubMed ID: 2381875 [TBL] [Abstract][Full Text] [Related]
11. Design, synthesis, and evaluation of the antipsychotic potential of orally bioavailable neurotensin (8-13) analogues containing non-natural arginine and lysine residues. Hadden MK; Orwig KS; Kokko KP; Mazella J; Dix TA Neuropharmacology; 2005 Dec; 49(8):1149-59. PubMed ID: 16095636 [TBL] [Abstract][Full Text] [Related]
12. Harpagophytum Procumbens Ethyl Acetate Fraction Reduces Fluphenazine-Induced Vacuous Chewing Movements and Oxidative Stress in Rat Brain. Schaffer LF; de Freitas CM; Chiapinotto Ceretta AP; Peroza LR; de Moraes Reis E; Krum BN; Busanello A; Boligon AA; Sudati JH; Fachinetto R; Wagner C Neurochem Res; 2016 May; 41(5):1170-84. PubMed ID: 26732278 [TBL] [Abstract][Full Text] [Related]
13. Neuroleptic-induced chewing movements in the rat are suppressed by peripherally but not centrally administered CCK and abolished by bilateral subdiaphragmatic vagotomy. Stoessl AJ; Polanski E Neuropharmacology; 1993 Jun; 32(6):555-60. PubMed ID: 8101638 [TBL] [Abstract][Full Text] [Related]
14. Central neurotensin receptor activation produces differential behavioral responses in Fischer and Lewis rats. Bauco P; Rompré PP Psychopharmacology (Berl); 2003 Jul; 168(3):253-61. PubMed ID: 12682711 [TBL] [Abstract][Full Text] [Related]
15. Reversal of haloperidol-induced tardive vacuous chewing movements and supersensitive somatodendritic serotonergic response by buspirone in rats. Haleem DJ; Samad N; Haleem MA Pharmacol Biochem Behav; 2007 May; 87(1):115-21. PubMed ID: 17498786 [TBL] [Abstract][Full Text] [Related]
16. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Bishnoi M; Chopra K; Kulkarni SK Pharmacol Biochem Behav; 2008 Feb; 88(4):511-22. PubMed ID: 18022680 [TBL] [Abstract][Full Text] [Related]
17. Neuroleptic-induced vacuous chewing movements in rodents: incidence and effects of long-term increases in haloperidol dose. Egan MF; Hyde TM; Kleinman JE; Wyatt RJ Psychopharmacology (Berl); 1995 Jan; 117(1):74-81. PubMed ID: 7724705 [TBL] [Abstract][Full Text] [Related]
19. Tolerance to the hypothermic but not to the analgesic effect of [D-Trp11]neurotensin during the semichronic intracerebroventricular infusion of the peptide in rats. Dubuc I; Pain C; Suaudeau C; Costentin J Peptides; 1994; 15(2):303-7. PubMed ID: 8008636 [TBL] [Abstract][Full Text] [Related]
20. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]