These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 16859555)

  • 1. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data.
    Collins SR; Schuldiner M; Krogan NJ; Weissman JS
    Genome Biol; 2006; 7(7):R63. PubMed ID: 16859555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.
    Schuldiner M; Collins SR; Thompson NJ; Denic V; Bhamidipati A; Punna T; Ihmels J; Andrews B; Boone C; Greenblatt JF; Weissman JS; Krogan NJ
    Cell; 2005 Nov; 123(3):507-19. PubMed ID: 16269340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting between-pathway models from E-MAP interactions using expected graph compression.
    Kelley DR; Kingsford C
    J Comput Biol; 2011 Mar; 18(3):379-90. PubMed ID: 21385041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes.
    Babu M; Musso G; Díaz-Mejía JJ; Butland G; Greenblatt JF; Emili A
    Mol Biosyst; 2009 Dec; 5(12):1439-55. PubMed ID: 19763343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missing value imputation for epistatic MAPs.
    Ryan C; Greene D; Cagney G; Cunningham P
    BMC Bioinformatics; 2010 Apr; 11():197. PubMed ID: 20406472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe.
    Roguev A; Wiren M; Weissman JS; Krogan NJ
    Nat Methods; 2007 Oct; 4(10):861-6. PubMed ID: 17893680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion.
    Žitnik M; Zupan B
    J Comput Biol; 2015 Jun; 22(6):595-608. PubMed ID: 25658751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.
    Schuldiner M; Collins SR; Weissman JS; Krogan NJ
    Methods; 2006 Dec; 40(4):344-52. PubMed ID: 17101447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic measurement of theory of epistatic effects.
    Wagner GP; Laubichler MD; Bagheri-Chaichian H
    Genetica; 1998; 102-103(1-6):569-80. PubMed ID: 9766965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide scoring of positive and negative epistasis through decomposition of quantitative genetic interaction fitness matrices.
    Eronen VP; Lindén RO; Lindroos A; Kanerva M; Aittokallio T
    PLoS One; 2010 Jul; 5(7):e11611. PubMed ID: 20657656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach.
    Pan XY; Tian Y; Huang Y; Shen HB
    Genomics; 2011 May; 97(5):257-64. PubMed ID: 21397683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Links Between Cellular Pathways by Genetic Interaction Mapping (GIM).
    Malabat C; Saveanu C
    Methods Mol Biol; 2016; 1361():325-43. PubMed ID: 26483030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular epistasis in yeast metabolism.
    Segrè D; Deluna A; Church GM; Kishony R
    Nat Genet; 2005 Jan; 37(1):77-83. PubMed ID: 15592468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring genetic interactions and networks with yeast.
    Boone C; Bussey H; Andrews BJ
    Nat Rev Genet; 2007 Jun; 8(6):437-49. PubMed ID: 17510664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL analysis for epistatic effects and QTL x environment interaction effects on final height of rice (Oryza sativa L.).
    Cao GQ; Zhu J; He CX; Gao YM; Wu P
    Yi Chuan Xue Bao; 2001; 28(2):135-43. PubMed ID: 11233257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.
    Lindén RO; Eronen VP; Aittokallio T
    BMC Syst Biol; 2011 Mar; 5():45. PubMed ID: 21435228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects.
    Duthie C; Simm G; Doeschl-Wilson A; Kalm E; Knap PW; Roehe R
    J Anim Sci; 2010 Jul; 88(7):2219-34. PubMed ID: 20228239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistatic interactions among metabolic genes depend upon environmental conditions.
    Jagdishchandra Joshi C; Prasad A
    Mol Biosyst; 2014 Oct; 10(10):2578-89. PubMed ID: 25018101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.