BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16859633)

  • 1. Aggregation of the 636 nm emitting monomeric protochlorophyllide form into flash-photoactive, oligomeric 644 and 655 nm emitting forms in vitro.
    Kósa A; Márton Z; Solymosi K; Bóka K; Böddi B
    Biochim Biophys Acta; 2006 Jul; 1757(7):811-20. PubMed ID: 16859633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation parameters of the blue shift (Shibata shift) subsequent to protochlorophyllide phototransformation.
    Smeller L; Solymosi K; Fidy J; Böddi B
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):130-8. PubMed ID: 14499597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls.
    Erdei AL; Kósa A; Böddi B
    Photosynth Res; 2019 Apr; 140(1):93-102. PubMed ID: 30225812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching.
    Szenzenstein A; Kósa A; Solymosi K; Sárvári E; Böddi B
    Physiol Plant; 2010 Jan; 138(1):102-12. PubMed ID: 20070845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early reactions of light-induced protochlorophyllide and chlorophyllide transformations analyzed in vivo at room temperature with a diode array spectrofluorometer.
    Böddi B; Popovic R; Franck F
    J Photochem Photobiol B; 2003 Jan; 69(1):31-9. PubMed ID: 12547494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B; Bertrand M; Funk C
    Photochem Photobiol; 2000 Nov; 72(5):660-8. PubMed ID: 11107852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sativa L.
    Klement H; Oster U; Rüdiger W
    FEBS Lett; 2000 Sep; 480(2-3):306-10. PubMed ID: 11034350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and characterization of prolamellar bodies with atomic force microscopy.
    Grzyb JM; Solymosi K; Strzałka K; Mysliwa-Kurdziel B
    J Plant Physiol; 2013 Sep; 170(14):1217-27. PubMed ID: 23777838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea.
    Seyedi M; Timko MP; Sundqvist C
    Plant Cell Physiol; 2001 Sep; 42(9):931-41. PubMed ID: 11577187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light- and cold-stress effects on the greening process in epicotyls and young stems of red oak (Quercus rubra) seedlings.
    Skribanek A; Böddi B
    Tree Physiol; 2001 May; 21(8):549-54. PubMed ID: 11359713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH:protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state.
    Lebedev N; Karginova O; McIvor W; Timko MP
    Biochemistry; 2001 Oct; 40(42):12562-74. PubMed ID: 11601980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures.
    Kósa A; Preininger É; Böddi B
    Physiol Plant; 2015 Nov; 155(3):330-7. PubMed ID: 25825156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular rearrangement in POR macrodomains as a reason for the blue shift of chlorophyllide fluorescence observed after phototransformation.
    Solymosi K; Smeller L; Ryberg M; Sundqvist C; Fidy J; Böddi B
    Biochim Biophys Acta; 2007 Jun; 1768(6):1650-8. PubMed ID: 17459331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves.
    Schoefs B; Bertrand M; Franck F
    Photochem Photobiol; 2000 Jul; 72(1):85-93. PubMed ID: 10911732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth.
    Schoefs B; Franck F
    Photosynth Res; 2008 Apr; 96(1):15-26. PubMed ID: 17978860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hg(2+) reacts with different components of the NADPH : protochlorophyllide oxidoreductase macrodomains.
    Solymosi K; Lenti K; Myśliwa-Kurdziel B; Fidy J; Strzałka K; Böddi B
    Plant Biol (Stuttg); 2004 May; 6(3):358-68. PubMed ID: 15143445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominance of a 675 nm chlorophyll(ide) form upon selective 632.8 or 654 nm laser illumination after partial protochlorophyllide phototransformation.
    Kósa A; Böddi B
    Photosynth Res; 2012 Dec; 114(2):111-20. PubMed ID: 23104011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal etioplast development in barley seedlings infected with BSMV by seed transmission.
    Harsányi A; Böddi B; Bóka K; Almási A; Gáborjányi R
    Physiol Plant; 2002 Jan; 114(1):149-155. PubMed ID: 11982946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:protochlorophyllide oxidoreductase of barley expressed in Escherichia coli.
    Knaust R; Seyfried B; Schmidt L; Schulz R; Senger H
    J Photochem Photobiol B; 1993 Oct; 20(2-3):161-6. PubMed ID: 8271116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.