These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16859694)

  • 1. Continuous voltage gradients and their application to true moving bed electrophoresis.
    Thome BM; Ivory CF
    J Chromatogr A; 2006 Sep; 1129(1):119-28. PubMed ID: 16859694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the scale of true moving bed electrophoretic separations using filtration to reduce solvent volumetric flows between sections II and III.
    Thome BM; Ivory CF
    J Chromatogr A; 2007 Jan; 1138(1-2):291-300. PubMed ID: 17097668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated moving bed chromatography for the separation of enantiomers.
    Rajendran A; Paredes G; Mazzotti M
    J Chromatogr A; 2009 Jan; 1216(4):709-38. PubMed ID: 19004446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step gradients in 3-zone simulated moving bed chromatography. Application to the purification of antibodies and bone morphogenetic protein-2.
    Kessler LC; Gueorguieva L; Rinas U; Seidel-Morgenstern A
    J Chromatogr A; 2007 Dec; 1176(1-2):69-78. PubMed ID: 18036537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated moving bed technology with a simplified approach for protein purification. Separation of lactoperoxidase and lactoferrin from whey protein concentrate.
    Andersson J; Mattiasson B
    J Chromatogr A; 2006 Feb; 1107(1-2):88-95. PubMed ID: 16387313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioanalytical separations using electric field gradient techniques.
    Meighan MM; Staton SJ; Hayes MA
    Electrophoresis; 2009 Mar; 30(5):852-65. PubMed ID: 19197905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a segmented model for a continuous electrophoretic moving bed enantiomer separation.
    Thome BM; Ivory CF
    Biotechnol Prog; 2003; 19(6):1703-12. PubMed ID: 14656145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. True moving bed electrophoresis using stepped electric field gradients.
    Thome BM; Ivory CF
    Electrophoresis; 2007 May; 28(10):1477-87. PubMed ID: 17492725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient elution isotachophoresis for enrichment and separation of biomolecules.
    Shackman JG; Ross D
    Anal Chem; 2007 Sep; 79(17):6641-9. PubMed ID: 17676924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal operating mode for enantioseparation of SB-553261 racemate based on simulated moving bed technology.
    Wongso F; Hidajat K; Ray AK
    Biotechnol Bioeng; 2004 Sep; 87(6):704-22. PubMed ID: 15329929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a hybrid chromatography-crystallization process for the separation of Tröger's base enantiomers.
    Amanullah M; Mazzotti M
    J Chromatogr A; 2006 Feb; 1107(1-2):36-45. PubMed ID: 16289122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field gradient electrophoresis.
    Warnick KF; Francom SJ; Humble PH; Kelly RT; Woolley AT; Lee ML; Tolley HD
    Electrophoresis; 2005 Jan; 26(2):405-14. PubMed ID: 15657888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental implementation of automatic 'cycle to cycle' control of a chiral simulated moving bed separation.
    Amanullah M; Grossmann C; Mazzotti M; Morari M; Morbidelli M
    J Chromatogr A; 2007 Sep; 1165(1-2):100-8. PubMed ID: 17707852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of multicomponent continuous countercurrent chromatography based on connected 4-zone units.
    Kessler LC; Seidel-Morgenstern A
    J Chromatogr A; 2006 Sep; 1126(1-2):323-37. PubMed ID: 16759666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioseparation of 1-phenyl-1-propanol by supercritical fluid-simulated moving bed chromatography.
    Rajendran A; Peper S; Johannsen M; Mazzotti M; Morbidelli M; Brunner G
    J Chromatogr A; 2005 Oct; 1092(1):55-64. PubMed ID: 16188560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an eremomycin-chiral stationary phase for the separation of DL-methionine using simulated moving bed technology.
    Zhang L; Gedicke K; Kuznetsov MA; Staroverov SM; Seidel-Morgenstern A
    J Chromatogr A; 2007 Aug; 1162(1):90-6. PubMed ID: 17482626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process.
    Araújo JM; Rodrigues RC; Mota JP
    J Chromatogr A; 2008 May; 1189(1-2):302-13. PubMed ID: 18243230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical fluid simulated moving bed chromatography II. Langmuir isotherm.
    Di Giovanni O; Mazzotti M; Morbidell M; Denet F; Hauck W; Nicoud RM
    J Chromatogr A; 2001 Jun; 919(1):1-12. PubMed ID: 11459295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process.
    Aumann L; Morbidelli M
    Biotechnol Bioeng; 2007 Dec; 98(5):1043-55. PubMed ID: 17570708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography.
    Bae YS; Lee CH
    J Chromatogr A; 2006 Jul; 1122(1-2):161-73. PubMed ID: 16690063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.