These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1685971)

  • 1. D-glucose permeability in river lamprey (Lampetra fluviatilis) and carp (Cyprinus carpio) erythrocytes.
    Tiihonen K; Nikinmaa M
    Comp Biochem Physiol A Comp Physiol; 1991; 100(3):581-4. PubMed ID: 1685971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Glucose uptake in fish hepatocytes: mediated by transporter in rainbow trout (Oncorhynchus mykiss), but only by diffusion in prespawning lamprey (Lampetra fluviatilis) and in RTH-149 cell line.
    Mannerström M; Tähti H; Tiihonen K; Salama A
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Nov; 136(3):779-90. PubMed ID: 14613805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport in fish erythrocytes: variable cytochalasin-B-sensitive hexose transport activity in the common eel (Anguilla japonica) and transport deficiency in the paddyfield eel (Monopterus albus) and rainbow trout (Salmo gairdneri).
    Tse CM; Young JD
    J Exp Biol; 1990 Jan; 148():367-83. PubMed ID: 2307927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monosaccharide uptake in common carp (Cyprinus carpio) EPC cells is mediated by a facilitative glucose carrier.
    Teerijoki H; Krasnov A; Pitkänen TI; Mölsä H
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Mar; 128(3):483-91. PubMed ID: 11250543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport in carp erythrocytes: individual variation and effects of osmotic swelling, extracellular pH and catecholamines.
    Tiihonen K; Nikinmaa M; Lappivaara J
    J Exp Biol; 1995; 198(Pt 2):577-83. PubMed ID: 9318283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.
    Baker GF; Widdas WF
    J Physiol; 1988 Jan; 395():57-76. PubMed ID: 3411487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monosaccharide transport into hemocytes of a sipunculan worm Themiste dyscrita.
    Ingermann RL; Hall RE; Bissonnette JM; Terwilliger RC
    Am J Physiol; 1985 Jul; 249(1 Pt 2):R139-44. PubMed ID: 4014493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxygen saturation on the CO2 transport properties of Lampetra red cells.
    Nikinmaa M; Mattsoff L
    Respir Physiol; 1992 Feb; 87(2):219-30. PubMed ID: 1565894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride transport in red blood cells of lamprey Lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova AYu ; Sherstobitov AO; Gusev GP
    J Exp Biol; 1998 Mar; 201(Pt 5):693-700. PubMed ID: 9542152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Kinetic properties of sodium transport pathways in the river lamprey Lampetra fluviatilis erythrocytes].
    Ivanova TI; Sherstobitov AO; Gusev GP
    Zh Evol Biokhim Fiziol; 2007; 43(6):468-73. PubMed ID: 18265557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of glucose transport in an insulin-secreting cell line.
    Trautmann ME; Wollheim CB
    Biochem J; 1987 Mar; 242(3):625-30. PubMed ID: 3036095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibration of hexose concentration in erythrocytes from normal and diabetic rats.
    Manuel Y Keenoy B; Malaisse WJ
    Biochem Med Metab Biol; 1993 Aug; 50(1):54-66. PubMed ID: 8373635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport carrier of human erythrocytes. Radiation target size measurement based on flux inactivation.
    Cuppoletti J; Jung CY; Green FA
    J Biol Chem; 1981 Feb; 256(3):1305-6. PubMed ID: 7192711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of adrenaline on glucose transport in red cells of Rana balcanica.
    Kaloyianni M; Doukakis I
    Gen Physiol Biophys; 2003 Mar; 22(1):69-80. PubMed ID: 12870702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Absence of parvalbumins in the muscles of Lampetra fluviatilis lampreys].
    Pershina LI
    Zh Evol Biokhim Fiziol; 1980; 16(2):196-9. PubMed ID: 7386089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haemoglobin function in intact Lampetra fluviatilis erythrocytes.
    Nikinmaa M
    Respir Physiol; 1993 Mar; 91(2-3):283-93. PubMed ID: 8469851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-insulin dependent diabetic patients have increased glucose uptake in red blood cells.
    Bistritzer T; Roeder LM; Hanukoglu L; Levin PA
    Horm Metab Res; 1991 Feb; 23(2):70-3. PubMed ID: 2045061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.