These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 16859726)

  • 1. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation.
    Haïat G; Padilla F; Peyrin F; Laugier P
    J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis.
    Peyrin F; Attali D; Chappard C; Benhamou CL
    Med Phys; 2010 Aug; 37(8):4364-76. PubMed ID: 20879596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach.
    Haïat G; Padilla F; Svrcekova M; Chevalier Y; Pahr D; Peyrin F; Laugier P; Zysset P
    J Biomech; 2009 Sep; 42(13):2033-9. PubMed ID: 19646703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Problems with ultrasonic measurements of shear modules of structured media.
    Besdo D; Besdo S; Behrens BA; Bouguecha A
    Acta Biomater; 2007 Sep; 3(5):723-33. PubMed ID: 17289452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-based prediction of elastic properties of trabecular bone samples.
    Cosmi F
    Acta Bioeng Biomech; 2009; 11(1):3-9. PubMed ID: 19736904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound and the biomechanical competence of bone.
    Nicholson PF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.
    Wille ML; Langton CM
    Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of qus parameters to controlled variations of bone strength assessed with a cellular model.
    Haiat G; Padilla F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1488-96. PubMed ID: 18986938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume mesh generation and finite element analysis of trabecular bone magnetic resonance images.
    Alberich-Bayarri A; Moratal D; Martí-Bonmatí L; Salmerón-Sánchez M; Vallés-Lluch A; Nieto-Charques L; Rieta JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1603-6. PubMed ID: 18002278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The measurement of broadband ultrasonic attenuation in cancellous bone--a review of the science and technology.
    Langton CM; Njeh CF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1546-54. PubMed ID: 18986945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.