These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16859963)

  • 1. Temperature and pressure dependence of the mode Grüneisen parameters close to the melting point in hexagonal ice.
    Karacali H; Yurtseven H
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):487-92. PubMed ID: 16859963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and pressure dependence of the Raman frequency shifts near the melting point in ice I.
    Yurtseven H; Karaçali H
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jun; 64(3):771-7. PubMed ID: 16442839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linear variation of the thermal expansivity with frequency shifts for the translational mode in ammonia solid II near the melting point.
    Yurtseven H; Karaçali H
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):802-6. PubMed ID: 17339128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific heat and frequency shifts for the translational modes in ammonia solid I close to phase transition.
    Yurtseven H; Karaçali H
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1060-6. PubMed ID: 17084105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic modification of the Pippard relation applied for the translational mode in ammonia solid II near the melting point.
    Yurtseven H; Yildiz I
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2543-8. PubMed ID: 16043046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman frequency shifts for the rotatory lattice mode close to the melting point in ammonia solid I.
    Karacali H; Yurtseven H
    J Phys Chem B; 2005 Sep; 109(35):16974-8. PubMed ID: 16853160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual Gruneisen and Bridgman parameters of low-density amorphous ice and their implications on pressure induced amorphization.
    Andersson O; Inaba A
    J Chem Phys; 2005 Mar; 122(12):124710. PubMed ID: 15836412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pippard relations applied to the lambda-phase transition in NH4Br.
    Yurtseven H; Yanik A; Sen S
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):105-9. PubMed ID: 18182320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models.
    Abascal JL; Vega C
    Phys Chem Chem Phys; 2007 Jun; 9(22):2775-8. PubMed ID: 17538723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals.
    Yoo S; Zeng XC; Xantheas SS
    J Chem Phys; 2009 Jun; 130(22):221102. PubMed ID: 19530755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman frequency shifts of an internal mode near the tricritical and second order phase transitions in NH4Cl.
    Yurtseven H; Tümkaya MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):926-30. PubMed ID: 16099199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of crystal growth of hexagonal ice (I(h)).
    Rozmanov D; Kusalik PG
    Phys Chem Chem Phys; 2011 Sep; 13(34):15501-11. PubMed ID: 21792403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2008 Oct; 112(43):10708-12. PubMed ID: 18785690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk melting of ice at the limit of superheating.
    Schmeisser M; Iglev H; Laubereau A
    J Phys Chem B; 2007 Sep; 111(38):11271-5. PubMed ID: 17784744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onsager heat of transport for water vapour at the surface of water and ice: thermal accommodation coefficients for water vapour on a stainless-steel surface.
    Pursell CJ; Phillips LF
    Phys Chem Chem Phys; 2006 Oct; 8(40):4694-9. PubMed ID: 17047768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equation of state and thermodynamic Grüneisen parameter of monoclinic 1,1-diamino-2,2-dinitroethylene.
    Zhang J; Velisavljevic N; Zhu J; Wang L
    J Phys Condens Matter; 2016 Oct; 28(39):395402. PubMed ID: 27494384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals.
    Pan D; Liu LM; Slater B; Michaelides A; Wang E
    ACS Nano; 2011 Jun; 5(6):4562-9. PubMed ID: 21568289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.