These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Hematopoietic cell regulation of osteoblast proliferation and differentiation. Bethel M; Srour EF; Kacena MA Curr Osteoporos Rep; 2011 Jun; 9(2):96-102. PubMed ID: 21360286 [TBL] [Abstract][Full Text] [Related]
8. Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. Olivos DJ; Alvarez M; Cheng YH; Hooker RA; Ciovacco WA; Bethel M; McGough H; Yim C; Chitteti BR; Eleniste PP; Horowitz MC; Srour EF; Bruzzaniti A; Fuchs RK; Kacena MA J Cell Biochem; 2017 Aug; 118(8):2231-2240. PubMed ID: 28067429 [TBL] [Abstract][Full Text] [Related]
9. A novel role for thrombopoietin in regulating osteoclast development in humans and mice. Bethel M; Barnes CL; Taylor AF; Cheng YH; Chitteti BR; Horowitz MC; Bruzzaniti A; Srour EF; Kacena MA J Cell Physiol; 2015 Sep; 230(9):2142-51. PubMed ID: 25656774 [TBL] [Abstract][Full Text] [Related]
10. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. Meijome TE; Ekwealor JTB; Hooker RA; Cheng YH; Ciovacco WA; Balamohan SM; Srinivasan TL; Chitteti BR; Eleniste PP; Horowitz MC; Srour EF; Bruzzaniti A; Fuchs RK; Kacena MA J Cell Biochem; 2016 Apr; 117(4):959-69. PubMed ID: 26375403 [TBL] [Abstract][Full Text] [Related]
11. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Nakamura-Ishizu A; Takubo K; Fujioka M; Suda T Biochem Biophys Res Commun; 2014 Nov; 454(2):353-7. PubMed ID: 25451253 [TBL] [Abstract][Full Text] [Related]
12. Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. Pallotta I; Lovett M; Rice W; Kaplan DL; Balduini A PLoS One; 2009 Dec; 4(12):e8359. PubMed ID: 20027303 [TBL] [Abstract][Full Text] [Related]
13. Morc3 mutant mice exhibit reduced cortical area and thickness, accompanied by altered haematopoietic stem cells niche and bone cell differentiation. Jadhav G; Teguh D; Kenny J; Tickner J; Xu J Sci Rep; 2016 May; 6():25964. PubMed ID: 27188231 [TBL] [Abstract][Full Text] [Related]
14. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis. Murray LJ; Luens KM; Estrada MF; Bruno E; Hoffman R; Cohen RL; Ashby MA; Vadhan-Raj S Exp Hematol; 1998 Mar; 26(3):207-16. PubMed ID: 9502616 [TBL] [Abstract][Full Text] [Related]
16. The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Stone AP; Nascimento TF; Barrachina MN Blood; 2022 Jan; 139(4):483-491. PubMed ID: 34587234 [TBL] [Abstract][Full Text] [Related]
18. Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Kacena MA; Gundberg CM; Nelson T; Horowitz MC Bone; 2005 Feb; 36(2):215-23. PubMed ID: 15780947 [TBL] [Abstract][Full Text] [Related]
19. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Ciovacco WA; Goldberg CG; Taylor AF; Lemieux JM; Horowitz MC; Donahue HJ; Kacena MA Bone; 2009 Jan; 44(1):80-6. PubMed ID: 18848655 [TBL] [Abstract][Full Text] [Related]
20. Megakaryocytopoiesis in vitro: from the stem cells' perspective. Cardier JE; Foster DC; Lok S; Jacobsen SE; Murphy MJ Stem Cells; 1996; 14 Suppl 1():163-72. PubMed ID: 11012217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]