These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 16860313)
1. Classical as well as novel antipsychotic drugs increase self-stimulation threshold in the rat--similar mechanism of action? Flagstad P; Arnt J; Olsen CK Eur J Pharmacol; 2006 Aug; 544(1-3):69-76. PubMed ID: 16860313 [TBL] [Abstract][Full Text] [Related]
2. Expression of noradrenergic alpha1, serotoninergic 5HT2a and dopaminergic D2 receptors on neurons activated by typical and atypical antipsychotic drugs. Ma J; Ye N; Cohen BM Prog Neuropsychopharmacol Biol Psychiatry; 2006 Jun; 30(4):647-57. PubMed ID: 16487641 [TBL] [Abstract][Full Text] [Related]
3. Comparing sertindole to other new generation antipsychotics on preferential dopamine output in limbic versus striatal projection regions: mechanism of action. Hertel P Synapse; 2006 Dec; 60(7):543-52. PubMed ID: 16952163 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of antipsychotic drugs on serotonin-1A receptor-mediated disruption of prepulse inhibition. van den Buuse M; Gogos A J Pharmacol Exp Ther; 2007 Mar; 320(3):1224-36. PubMed ID: 17194799 [TBL] [Abstract][Full Text] [Related]
5. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. Kapur S; Seeman P J Psychiatry Neurosci; 2000 Mar; 25(2):161-6. PubMed ID: 10740989 [TBL] [Abstract][Full Text] [Related]
6. Alpha2-adrenoceptor antagonism is neither sufficient nor necessary for the distinctive action of atypical neuroleptics on intracranial self-stimulation in the rat. Montgomery AM; Grottick AJ; Herberg LJ Behav Pharmacol; 2003 Jul; 14(4):307-14. PubMed ID: 12838036 [TBL] [Abstract][Full Text] [Related]
7. In vivo occupation of dopamine D1, D2 and serotonin (5-HT)2A receptors by sertindole in the rat brain. Takahashi Y; Kusumi I; Ishikane T; Matsubara S; Koyama T J Psychiatry Neurosci; 1998 May; 23(3):157-62. PubMed ID: 9595889 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics. Bardin L; Auclair A; Kleven MS; Prinssen EP; Koek W; Newman-Tancredi A; Depoortère R Behav Pharmacol; 2007 Mar; 18(2):103-18. PubMed ID: 17351418 [TBL] [Abstract][Full Text] [Related]
10. Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. Amargós-Bosch M; Adell A; Artigas F J Neurochem; 2007 Jul; 102(2):550-61. PubMed ID: 17394545 [TBL] [Abstract][Full Text] [Related]
11. Less is more: antipsychotic drug effects are greater with transient rather than continuous delivery. Samaha AN; Reckless GE; Seeman P; Diwan M; Nobrega JN; Kapur S Biol Psychiatry; 2008 Jul; 64(2):145-52. PubMed ID: 18295747 [TBL] [Abstract][Full Text] [Related]
12. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Kuroki T; Nagao N; Nakahara T Prog Brain Res; 2008; 172():199-212. PubMed ID: 18772034 [TBL] [Abstract][Full Text] [Related]
13. F15063, a potential antipsychotic with dopamine D(2)/D(3) receptor antagonist and 5-HT(1A) receptor agonist properties: influence on immediate-early gene expression in rat prefrontal cortex and striatum. Bruins Slot LA; Lestienne F; Grevoz-Barret C; Newman-Tancredi A; Cussac D Eur J Pharmacol; 2009 Oct; 620(1-3):27-35. PubMed ID: 19695244 [TBL] [Abstract][Full Text] [Related]
14. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors. Romón T; Planas AM; Adell A CNS Neurol Disord Drug Targets; 2014 Feb; 13(1):104-11. PubMed ID: 24040788 [TBL] [Abstract][Full Text] [Related]
15. S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects. Millan MJ; Loiseau F; Dekeyne A; Gobert A; Flik G; Cremers TI; Rivet JM; Sicard D; Billiras R; Brocco M J Pharmacol Exp Ther; 2008 Mar; 324(3):1212-26. PubMed ID: 18096759 [TBL] [Abstract][Full Text] [Related]
16. Lurasidone (SM-13496), a novel atypical antipsychotic drug, reverses MK-801-induced impairment of learning and memory in the rat passive-avoidance test. Ishiyama T; Tokuda K; Ishibashi T; Ito A; Toma S; Ohno Y Eur J Pharmacol; 2007 Oct; 572(2-3):160-70. PubMed ID: 17662268 [TBL] [Abstract][Full Text] [Related]
17. Repeated antipsychotic treatment progressively potentiates inhibition on phencyclidine-induced hyperlocomotion, but attenuates inhibition on amphetamine-induced hyperlocomotion: relevance to animal models of antipsychotic drugs. Sun T; Hu G; Li M Eur J Pharmacol; 2009 Jan; 602(2-3):334-42. PubMed ID: 19059234 [TBL] [Abstract][Full Text] [Related]
18. Antipsychotics lack alpha 1A/B adrenoceptor subtype selectivity in the rat. Cahir M; King DJ Eur Neuropsychopharmacol; 2005 Mar; 15(2):231-4. PubMed ID: 15695070 [TBL] [Abstract][Full Text] [Related]
19. Effects of antipsychotics and selective D3 antagonists on PPI deficits induced by PD 128907 and apomorphine. Zhang M; Ballard ME; Unger LV; Haupt A; Gross G; Decker MW; Drescher KU; Rueter LE Behav Brain Res; 2007 Aug; 182(1):1-11. PubMed ID: 17570538 [TBL] [Abstract][Full Text] [Related]
20. Antipsychotic drugs dose-dependently suppress the spontaneous hyperactivity of the chakragati mouse. Dawe GS; Nagarajah R; Albert R; Casey DE; Gross KW; Ratty AK Neuroscience; 2010 Nov; 171(1):162-72. PubMed ID: 20816926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]