BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16860333)

  • 1. Lock-and-key motif as a concept for designing affinity adsorbents for protein purification.
    Platis D; Sotriffer CA; Clonis Y; Labrou NE
    J Chromatogr A; 2006 Sep; 1128(1-2):138-51. PubMed ID: 16860333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.
    Melissis S; Labrou NE; Clonis YD
    J Chromatogr A; 2006 Jul; 1122(1-2):63-75. PubMed ID: 16712859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of recombinant protein-based influenza vaccine. Expression and affinity purification of H1N1 influenza virus neuraminidase.
    Dalakouras T; Smith BJ; Platis D; Cox MM; Labrou NE
    J Chromatogr A; 2006 Dec; 1136(1):48-56. PubMed ID: 17046775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial de novo design and application of a biomimetic affinity ligand for the purification of human anti-HIV mAb 4E10 from transgenic tobacco.
    Platis D; Maltezos A; Ma JK; Labrou NE
    J Mol Recognit; 2009; 22(6):415-24. PubMed ID: 19431140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.
    Maltezos A; Platis D; Vlachakis D; Kossida S; Marinou M; Labrou NE
    J Mol Recognit; 2014 Jan; 27(1):19-31. PubMed ID: 24375581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L from Peptostreptococcus magnus.
    Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2005; 18(3):213-24. PubMed ID: 15688433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography.
    Melissis S; Labrou NE; Clonis YD
    Biotechnol J; 2007 Jan; 2(1):121-32. PubMed ID: 17183508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity chromatography matures as bioinformatic and combinatorial tools develop.
    Clonis YD
    J Chromatogr A; 2006 Jan; 1101(1-2):1-24. PubMed ID: 16242704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of L-glutamate oxidase with triazine dyes: selection of ligands for affinity chromatography.
    Katsos NE; Labrou NE; Clonis YD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 807(2):277-85. PubMed ID: 15203041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand.
    Teng SF; Sproule K; Hussain A; Lowe CR
    J Mol Recognit; 1999; 12(1):67-75. PubMed ID: 10398398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step affinity purification of recombinant urokinase-type plasminogen activator receptor using a synthetic peptide developed by combinatorial chemistry.
    Jacobsen B; Gårdsvoll H; Juhl Funch G; Ostergaard S; Barkholt V; Ploug M
    Protein Expr Purif; 2007 Apr; 52(2):286-96. PubMed ID: 17027282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for the screening of solid-phase combinatorial libraries for affinity chromatography.
    Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2004; 17(3):262-7. PubMed ID: 15137035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis and characterisation of affinity ligands for glycoproteins.
    Palanisamy UD; Hussain A; Iqbal S; Sproule K; Lowe CR
    J Mol Recognit; 1999; 12(1):57-66. PubMed ID: 10398397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of novel affinity adsorbents for the purification of trypsin-like proteases.
    Burton NP; Lowe CR
    J Mol Recognit; 1992 Jun; 5(2):55-68. PubMed ID: 1472381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial receptor for glycoproteins.
    Gupta G; Lowe CR
    J Mol Recognit; 2004; 17(3):218-35. PubMed ID: 15137032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis and evaluation of biomimetic affinity ligands for elastases.
    Filippusson H; Erlendsson LS; Lowe CR
    J Mol Recognit; 2000; 13(6):370-81. PubMed ID: 11114070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical investigation of effect of spacer arm and support matrix of synthetic affinity chromatographic materials for the purification of monoclonal antibodies.
    Zamolo L; Salvalaglio M; Cavallotti C; Galarza B; Sadler C; Williams S; Hofer S; Horak J; Lindner W
    J Phys Chem B; 2010 Jul; 114(29):9367-80. PubMed ID: 20590137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA.
    Sugaya M; Nishino N; Katoh A; Harada K
    J Pept Sci; 2008 Aug; 14(8):924-35. PubMed ID: 18351707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.