BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16860342)

  • 1. Multi-state epidemic processes on complex networks.
    Masuda N; Konno N
    J Theor Biol; 2006 Nov; 243(1):64-75. PubMed ID: 16860342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact switching as a control strategy for epidemic outbreaks.
    Risau-Gusman S; Zanette DH
    J Theor Biol; 2009 Mar; 257(1):52-60. PubMed ID: 19056403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks.
    Barthélemy M; Barrat A; Pastor-Satorras R; Vespignani A
    J Theor Biol; 2005 Jul; 235(2):275-88. PubMed ID: 15862595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymptotic results for a multi-type contact birth-death process and related SIS epidemic.
    Rass L
    Math Biosci; 2007 Aug; 208(2):552-70. PubMed ID: 17306312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum description of a contact infection spread in a SIR model.
    Postnikov EB; Sokolov IM
    Math Biosci; 2007 Jul; 208(1):205-15. PubMed ID: 17174353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple endemic states in age-structured SIR epidemic models.
    Franceschetti A; Pugliese A; Breda D
    Math Biosci Eng; 2012 Jul; 9(3):577-99. PubMed ID: 22881027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling epidemics dynamics on heterogenous networks.
    Ben-Zion Y; Cohen Y; Shnerb NM
    J Theor Biol; 2010 May; 264(2):197-204. PubMed ID: 20117115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability analysis of a general age-dependent vaccination model for a vertically transmitted disease under the proportionate mixing assumption.
    el-Doma M
    IMA J Math Appl Med Biol; 2000 Jun; 17(2):119-36. PubMed ID: 10994509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemic spreading on contact networks with adaptive weights.
    Zhu G; Chen G; Xu XJ; Fu X
    J Theor Biol; 2013 Jan; 317():133-9. PubMed ID: 23063616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling development of epidemics with dynamic small-world networks.
    Saramäki J; Kaski K
    J Theor Biol; 2005 Jun; 234(3):413-21. PubMed ID: 15784275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of epidemiological models.
    Pinto A; Aguiar M; Martins J; Stollenwerk N
    Acta Biotheor; 2010 Dec; 58(4):381-9. PubMed ID: 20661626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of realistic vaccination strategies for contact networks of various degree distributions.
    Takeuchi F; Yamamoto K
    J Theor Biol; 2006 Nov; 243(1):39-47. PubMed ID: 16860340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new explanatory model of an SIR disease epidemic: a knowledge-based, probabilistic approach to epidemic analysis.
    Sayers BM; Angulo J
    Scand J Infect Dis; 2005; 37(1):55-60. PubMed ID: 15764191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Kermack-McKendrick model applied to an infectious disease in a natural population.
    Roberts MG
    IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On global and local critical points of extended contact process on homogeneous trees.
    Sugimine N; Masuda N; Konno N; Aihara K
    Math Biosci; 2008 May; 213(1):13-7. PubMed ID: 18395230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.