These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16860342)

  • 21. Effects of host social hierarchy on disease persistence.
    Davidson RS; Marion G; Hutchings MR
    J Theor Biol; 2008 Aug; 253(3):424-33. PubMed ID: 18485373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From individuals to epidemics.
    Levin SA; Durrett R
    Philos Trans R Soc Lond B Biol Sci; 1996 Nov; 351(1347):1615-21. PubMed ID: 8962442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity in susceptibility to infection can explain high reinfection rates.
    Rodrigues P; Margheri A; Rebelo C; Gomes MG
    J Theor Biol; 2009 Jul; 259(2):280-90. PubMed ID: 19306886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathogen spread on coupled networks: effect of host and network properties on transmission thresholds.
    Mills HL; Ganesh A; Colijn C
    J Theor Biol; 2013 Mar; 320():47-57. PubMed ID: 23246458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stochastic modeling of nonlinear epidemiology.
    Chen WY; Bokka S
    J Theor Biol; 2005 Jun; 234(4):455-70. PubMed ID: 15808867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A note on generation times in epidemic models.
    Svensson A
    Math Biosci; 2007 Jul; 208(1):300-11. PubMed ID: 17174352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
    Colizza V; Vespignani A
    J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Models of infectious diseases in spatially heterogeneous environments.
    Rodríguez DJ; Torres-Sorando L
    Bull Math Biol; 2001 May; 63(3):547-71. PubMed ID: 11374305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pandemic bounds for an epidemic on an infinite lattice.
    Rass L
    Math Biosci; 2005 Jun; 195(2):194-209. PubMed ID: 15921705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deterministic epidemic models with explicit household structure.
    House T; Keeling MJ
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Threshold effects for two pathogens spreading on a network.
    Newman ME
    Phys Rev Lett; 2005 Sep; 95(10):108701. PubMed ID: 16196976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission.
    Huang W; Han M; Liu K
    Math Biosci Eng; 2010 Jan; 7(1):51-66. PubMed ID: 20104948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Networks, epidemics and vaccination through contact tracing.
    Shaban N; Andersson M; Svensson A; Britton T
    Math Biosci; 2008 Nov; 216(1):1-8. PubMed ID: 18638493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epidemionics: from the host-host interactions to the systematic analysis of the emergent macroscopic dynamics of epidemic networks.
    Reppas AI; Spiliotis KG; Siettos CI
    Virulence; 2010; 1(4):338-49. PubMed ID: 21178467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals.
    Murray AG
    Prev Vet Med; 2009 Mar; 88(3):167-77. PubMed ID: 18930326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases.
    d'Onofrio A; Manfredi P
    J Theor Biol; 2009 Feb; 256(3):473-8. PubMed ID: 18992258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A motif-based approach to network epidemics.
    House T; Davies G; Danon L; Keeling MJ
    Bull Math Biol; 2009 Oct; 71(7):1693-706. PubMed ID: 19396497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple explanation for the low impact of border control as a countermeasure to the spread of an infectious disease.
    Scalia Tomba G; Wallinga J
    Math Biosci; 2008; 214(1-2):70-2. PubMed ID: 18387639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulations of infectious diseases on networks.
    Witten G; Poulter G
    Comput Biol Med; 2007 Feb; 37(2):195-205. PubMed ID: 16618482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.