BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16860360)

  • 1. Generation of a torsion wave and measuring its propagation velocity in the circumferential direction of arterial wall.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e165-8. PubMed ID: 16860360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of complex arterial elastic modulus from ring resonance excited by ultrasound radiation force.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e169-72. PubMed ID: 16860364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stiffening of arteries by the tissue-mimicking gelatin.
    Zhang X; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1534-9. PubMed ID: 16921906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D dynamical ultrasonic model of pulsating vessel walls.
    Balocco S; Basset O; Courbebaisse G; Delachartre P; Tortoli P; Cachard C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e179-83. PubMed ID: 16857232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive method for estimation of complex elastic modulus of arterial vessels.
    Zhang X; Kinnick RR; Fatemi M; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):642-52. PubMed ID: 16060513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Array signal processing for local arterial pulse wave velocity measurement using ultrasound.
    Hoctor RT; Dentinger AM; Thomenius KE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 May; 54(5):1018-27. PubMed ID: 17523566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust segmentation methods with an application to aortic pulse wave velocity calculation.
    Babin D; Devos D; Pižurica A; Westenberg J; Vansteenkiste E; Philips W
    Comput Med Imaging Graph; 2014 Apr; 38(3):179-89. PubMed ID: 24405817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of wave velocity in arterial walls with ultrasound transducers.
    Zhang X; Greenleaf JF
    Ultrasound Med Biol; 2006 Nov; 32(11):1655-60. PubMed ID: 17112952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-sensitive lateral motion estimator for measurement of artery-wall displacement--phantom study.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2450-62. PubMed ID: 19942531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elasticity reconstruction for ultrasound elastography using a radial compression: an inverse approach.
    Luo J; Ying K; Bai J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e195-8. PubMed ID: 16854445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental three dimensional strain estimation from ultrasonic sectorial data.
    Said G; Basset O; Mari JM; Cachard C; Brusseau E; Vray D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e189-93. PubMed ID: 16870223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular wall elasticity measurement by magnetic resonance imaging.
    Woodrum DA; Romano AJ; Lerman A; Pandya UH; Brosh D; Rossman PJ; Lerman LO; Ehman RL
    Magn Reson Med; 2006 Sep; 56(3):593-600. PubMed ID: 16902974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear elasticity imaging: theory and phantom study.
    Erkamp RQ; Emelianov SY; Skovoroda AR; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):532-9. PubMed ID: 15217231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic strain imaging and reconstructive elastography for biological tissue.
    Khaled W; Reichling S; Bruhns OT; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e199-202. PubMed ID: 16857230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational elastography from standard ultrasound image sequences by global trust region optimization.
    Kybic J; Smutek D
    Inf Process Med Imaging; 2005; 19():299-310. PubMed ID: 17354704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive vascular elastography: theoretical framework.
    Maurice RL; Ohayon J; Frétigny Y; Bertrand M; Soulez G; Cloutier G
    IEEE Trans Med Imaging; 2004 Feb; 23(2):164-80. PubMed ID: 14964562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early evaluation of carotid elasticity by an instantaneous wave intensity technique in patients with systemic lupus erythematosus.
    Liu CL; Wang CZ; Wang Y; Zhang LZ; Liu L; Bian XL
    J Ultrasound Med; 2014 Dec; 33(12):2125-9. PubMed ID: 25425368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.
    He Q; Li GY; Lee FF; Zhang Q; Cao Y; Luo J
    Ultrasound Med Biol; 2017 Jul; 43(7):1520-1532. PubMed ID: 28408062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of longitudinal wave properties in bovine cortical bone in vitro.
    Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.